

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

BHU M.Sc. 2016

Q1. If a one dimensional potential of a physical system is $V(x) = \frac{x^2}{2} - \frac{x^4}{4}$, the unstable

equilibrium of the system would be at:

(a) x = 0 (b) x = +1 (c) x = -1 (d) $x = \pm 1$

Q2. An example of a non-inertial reference frame is when:

(a) a frame of reference is stationary w.r.t. the other frame

- (b) a frame of reference moves with a uniform velocity towards the other reference frame
- (c) a reference frame moves away from the other reference frame with a uniform velocity
- (d) a reference frame rotates with a uniform angular velocity w.r.t. the other frame
- Q3. The change in the wavelength of the scattered light in the Compton scattering is equal to the Compton wavelength of the electron when:
 - (a) the deflection angle of photon is $\pi/2$
 - (b) the deflection angle of photon is 0
 - (c) the deflection angle of photon is $\pi/3$
 - (d) the deflection angle of photon is π
- Q4. The maximum value of the change in the wavelength of the scattered light in the case of Compton scattering is:

(a)
$$0.024 \overset{0}{A}$$
 (b) $0.048 \overset{0}{A}$ (c) $0.0 \overset{0}{A}$ (d) $72 \overset{0}{A}$

- Q5. Raman scattering experiment is important because it leads to give information about(a) the quantum nature of light
 - (b) the quantum nature of the molecule
 - (c) the quantum nature of atom
 - (d) the quantum nature of molecule as well as light
- Q6. In an electron-positron annihilation experiment, two photons are produced travel back-toback. The speed of one photon w.r.t. the other photon would be equal to

(c) $\frac{2}{3}C$ (d) $\frac{3}{2}C$ (b) *C* (a) 2*C*

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks
fiziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

-	<u>d office</u> s, H.No. 40 D, G.F, Jia	Sarai,		Branch office Anand Institute of Mathemat
	(c) $1.17 \times 10^{-17} \text{ KeV}$	7	(d) $1.17 \times 10^{-17} \text{ eV}$	I
	(a) 1.17×10^{-17} ergs		(b) 1.17×10 ⁻¹⁷ jo	uls
	the kinetic energy of	of the recoil electron in	the Compton scatter	ring would be:
Q14	. If the incident pho	ton has a wavelength	equal to $2\overset{0}{A}$ and its	angle of deflection is 90° ,
	(c) 5380 nanomete	er	(d) 5380 angstro	m
	(a) 5380 meter		(b) 5380 microm	neter
	wavelength of the l	ight for the photo elect	tric effect to occur is	:
Q13				Im is $2.3eV$. The threshold
	(c) $\approx 6200 \stackrel{0}{\text{A}}$ and 9	$\overset{0}{A}$, respectively	(d) $\approx 7200 \stackrel{0}{\text{A}}$ and	$120 \overset{0}{\text{A}}$, respectively
	(a) $\approx 6200 \stackrel{0}{\text{A}}$ and 2	$20 \overset{0}{\text{A}}$, respectively	(b) $\approx 7200 \stackrel{0}{\text{A}}$ and	$1.9 \overset{0}{A}$, respectively
Q12	. The de Broglie way	velength associated wit	th $2eV$ photon and e	electron are:
	(c) 2.77 Micromet	er	(d) 1.77 Nanome	eter
	(a) 2.77 Meter		(b) 1.77 Angstro	m
(**	equal to	<u> </u>		· ······
Q11	-	-	_	mperature $27^{\circ}C$, is nearly
	-	(b) Angle $\pi/4$	(c) Angle π	(d) Angle 2π
QIU	α - particle would		e impact parameter i	s zero, the deflection of the
Q10		2	5	
	(a) 2λ	(b) $\frac{3}{2}\lambda$	(c) $\frac{2}{3}\lambda$	(d) λ
Q9.	The de Broglie way	velength, associated wi	th a light of wavelen	igth (λ) is:
	(c) always relativis	tic	(d) most of the ti	mes stationary
	(a) most of the time	es relativistic	(b) most of the time	mes non-relativistic
Q8.		of the photo electric e	ffect, the ejected ele	ctrons are:
	(c) Sometimes relation		Sometimes non-relation	ivistic
۲ /۰	(a) relativistic	• •	non-relativistic	
Q7.	In a Compton scatt	ering experiment, the r	recoil electron has to	he

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q15.	The energy equivale	ent of the root mass of	a position is:	
	(a) 0.511 <i>GeV</i>	(b) 0.511 <i>KeV</i>	(c) 0.511 <i>MeV</i>	(d) 0.511 <i>eV</i>
Q16.	Threshold waveleng	th of a photon that is	capable of generating	g photoelectric effect in a
	metal, is:			
	(a) the minimal valu	e	(b) the maximum v	alue
	(c) the average value	2	(d) the root square	mean value
Q17.	One of the followi	ng is not consistent	with the basic conce	epts of special theory of
	relativity:			
	(a) Maxwell's electr	omagnetic theory	(b) Lorentz transfor	rmations
	(c) Galilean transfor	rmations	(d) Michelson-Mor	ley experiment
Q18.	The electric and mag	gnetic fields of Maxw	ell's theory remain inv	ariant under:
	(a) Gauge transform	ations	(b) Lorentz transfor	rmations
	(c) Parity transformation	ations	(d) Galilean transfo	ormations
Q19.	Two electrons mov	e in the opposite di	rections each with sp	peed $0.9C$. The relative
	velocity of one with	respect to the other is	:	
	(a) 1.80 <i>C</i>	(b) 0.99 <i>C</i>	(c) $0.88C$	(d) 0.77 <i>C</i>
Q20.	Rutherford scatterin	g is important because	e it sheds light on:	
	(a) the structure of t	he molecule		
	(b) the size of the m	olecule		
	(c) the quantum natu	are of the molecule		
	(d) the structure of t	he atom		
Q21.	A rigid body is cons	strained to move freel	y on a plane. The num	ber of degrees of freedom
	for this system is			
	(a) One	(b) Two	(c) Four	(d) Five
Q22.	The condition unde	er which the followi	ng transformations (w	with constants $\alpha, \beta, \gamma, \delta$)
	$q \to Q = \gamma q + \delta p, p$	$\rightarrow P = \alpha q + \beta p \text{ would }$	ld be canonical is:	
	(a) $\alpha\delta - \beta\gamma = 1$	(b) $\alpha \gamma - \beta \delta = 0$	(c) $\alpha \gamma - \beta \delta = 1$	(d) $\alpha\delta - \beta^2 = 0$

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Hoad	office		D.	ranch offica
	(a) $\frac{2}{3E}$	(b) $\frac{1}{3E}$	(c) $\frac{1}{2E}$	(d) $\frac{3}{4E}$
		1	1	3
	is:		, _	
	influence of a poten	tial $V(x, y) = x^2 (x^2 + y)$	y^2). The average kine	tic energy of the particle
Q31.	A massive particle v	with total energy E is c	onstrained to move on	a finite plane under the
	(c) Holonomic and r	heonomic	(d) Non-holonomic	and scleronomic
-	(a) Conservative and		(b) Conservative and	d scleronomic
Q30.	The constraints of a			
	(a) One	(b) Two	(c) Three	(d) Four
Q27.	-	n an inclined plane, is:	ea to deserve the mo	tion of a forming cynnect
Q29.				tion of a rolling cylinder
	(a) 10^{19}	(b) 10^{16}	(c) 10^{22}	(d) 0
₹ 20.	per second is:	1.0 7 impere nows un	ough a buib. The hulli	
Q28.	· · · •			(d) A parabola ber of electrons that flow
Q27.	(a) An ellipse	ectory of a linear oscil (b) A circle	(c) A hyperbola	-
027	(a) Rest mass	(b) Charge	(c) Proper time	(d) Total energy
Q26.		cansformations, one of		
021	(-)	(-)	(-)	(-)
	(a) $\left(\frac{3}{2}\right)^+$	(b) $\left(\frac{1}{2}\right)^+$	(c) $\left(\frac{3}{2}\right)^{-}$	(d) $\left(\frac{1}{2}\right)^{-}$
	nucleus $_{19}K^{39}$ would	d be:		
Q25.	According to the n	uclear shell-model, th	e spin and parity of	the ground state of the
	(c) A mixture of ${}^{3}S_{1}$	and ${}^{3}P_{1}$ states	(d) A mixture of ${}^{3}S_{1}$	and ${}^{3}D_{1}$ states
	(a) A pure ${}^{3}S_{1}$ state		(b) A pure ${}^{3}p_{1}$ state	
Q24.	The ground state of	a deuteron is:	2	
	(a) udd	(b) uud	(c) uuu	(d) ddd
Q23.	The quark content o	-		

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

<u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q32. A massive particle with unit mass moves under the influence of potential $V(x) = x^3 - 3x + 2$. The angular frequency of the small oscillation, about the minimum of the potential, is:

(a)
$$\sqrt{6} \sec^{-1}$$
 (b) $\sqrt{3} \sec^{-1}$ (c) $\frac{1}{\sqrt{3}} \sec^{-1}$ (d) $\frac{1}{\sqrt{6}} \sec^{-1}$

- Q33. If A is 3×3 matrix with Tr(A) = 3, det A = 0 and one of the eigenvalue 1, the other two eigenvalues are:
 - (a) 2 and 0 (b) 1 and 1 (c) 0 and 1 (d) 3 and -1
- Q34. The following vector is orthogonal to the vector $a\hat{i} + b\hat{j}$ (with $a \neq b$)

(a)
$$a\hat{i} - b\hat{j}$$
 (b) $-a\hat{i} - b\hat{j}$ (c) $-b\hat{i} + a\hat{j}$ (d) $-b\hat{i} - a\hat{j}$

Q35. If \vec{r} is a position vector, the value of $\vec{\nabla}^2(\vec{r}.\vec{r}) = \vec{\nabla}^2 r^2$ is equal to:

(a) 6 (b) 0 (c) 3 (d) -3

Q36. An *a.c.* voltage source (with 120V and $60 H_z$) is connected across a $2\mu F$ capacitor. The power loss in the capacitor is:

- (a) 0.000 Watt (b) 10.800 Watt
- (c) 1.080 Watt (d) 0.972 Watt

Q37. A particle is described by the Lagrangian $L(x, y, \dot{x}, \dot{y}, t) = \frac{m}{2}e^{-\alpha t}(\dot{x}^2 + \dot{y}^2) - \frac{1}{2}kx^2$ where

 α and k are constants. One of the following statements is correct:

- (a) p_x is conserved (b) total energy is conserved
- (c) p_y is conserved (d) L_z is conserved

Q38. If q_1 and q_2 are generalized coordinates and p_1 and p_2 are corresponding generalized momenta, the Poisson-bracket $\{q_1^2 + q_2^2, 2p_1 + p_2\}$ is equal to:

(a) 0 (b) $2(q_1 + 2q_2)p_1$ (c) $3(q_1^2 + q_2^2)$ (d) $2(2q_1 + q_2)$

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

The energy eigenvalue corresponding to the bound state $\psi_{543}(r,\theta,\phi)$ for a hydrogen like Q46. atom is: (b) 5.440*eV* (c) $-0.544 \, eV$ (d) -5.440 eV(a) 0.544 *eV* Te gauge transformation between the scalar-vector potentials (φ, \vec{A}) and (φ', \vec{A}) is: Q47. (a) $\varphi' = \varphi + \alpha x$, $\vec{A}^1 = \vec{A} + \alpha t \hat{k}$ (b) $\varphi' = \varphi + \alpha x$, $\vec{A}^1 = \vec{A} - \alpha t \hat{k}$ (c) $\varphi' = \varphi + \alpha x$, $\vec{A}^1 = \vec{A} + \alpha t \hat{i}$ (d) $\varphi' = \varphi + \alpha x$, $\vec{A}^1 = \vec{A} - \alpha t \hat{i}$ The electric field \vec{E} , corresponding to the potential, $\varphi(\vec{r}, t) = 0, \vec{A}(\vec{r}, t) = -\frac{1}{4\pi \epsilon_0} \frac{qt}{r^2} \hat{r}$ is Q48. given by: (b) $E = -\frac{1}{4\pi \epsilon_0} \frac{q\hat{r}}{r^2}$ (a) $\vec{E} = 0$ (c) $\vec{E} = \frac{1}{4\pi \epsilon_0} \frac{q\hat{r}}{r^2}$ (d) $\vec{E} = -\frac{1}{4\pi \epsilon_0} \frac{qt}{r^2} \hat{r}$ Q49. The quark content of a neutron is: (b) *udd* (a) uud (c) *uds* (d) $ud \overline{s}$ The weakest of the four fundamental interaction of nature is: Q50. (a) Electromagnetic (b) Strong (c) Gravitation (d) Weak Q51. The degrees of freedom, when the FCC and BCC irons co-exist together in equilibrium, is: (a) Two (b) One (1) (c) Zero (0) (d) Minus one (-1) 052. For the same diffusion time, the depth of penetration at $500^{\circ}C$ and $850^{\circ}C$ is in the ratio 1:6. The activation energy for the above diffusion process is: (a) $57 KJ \text{ mole}^{-1}$ (b) $37 KJ \text{ mole}^{-1}$ (c) $144 KJ \text{ mole}^{-1}$ (d) $74 KJ \text{ mole}^{-1}$ The maximum possible decrease in energy during the gain-growth of copper, where the Q53. grain boundary energy is 0.5 Jm^{-2} and the initial grain-diameter is 0.3 mm, is as follows: (b) $2.5 KJ m^{-3}$ (c) $5.0 KJ m^{-3}$ (a) 0.5 KJ m^{-3} (d) $10.0 KJ m^{-3}$ Head office **Branch office** fiziks, H.No. 40 D, G.F, Jia Sarai, Anand Institute of Mathematics, Near IIT, Hauz Khas, New Delhi-16 28-B/6, Jia Sarai, Near IIT

Phone: 011-26865455/+91-9871145498

Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Head office Branch office					
	(a) Ionic	(b) Covalent	(c) Metallic	(d) Dipole	
	the value between 7	and 10, the bonding i	is called as:		
Q61.	In the expression fo	r bonding force $F(r)$	$=\frac{A}{r^m}-\frac{B}{r^n}\Big[n>m,(A,$	B) = constant] if n takes	
	(c) 48(forty eight)		(d) 24(twenty four))	
	(a) 8(eight)		(b) $12(twelve)$		
Q60.	The degeneracy of the	ne quantum state, with	$n_x^2 + n_y^2 + n_z^2 = 6$ is:		
	(a) $10^{-2} m \sec x$	(b) $10^{-2} n \sec (n + 1)^{-2} n \sec (n + $	(c) $10 \mu \sec$	(d) $5 \mu \text{sec}$	
Q59.	The switching time	for a Josephson junctio	on is of the order of ma	agnitude:	
	(a) 8270	(b) 78	(c) 10	(d) 312	
X 2001	$800^{\circ}C$ and $500^{\circ}C$				
Q58.			100 KJ mole^{-1} . the ra	atio of oxidation rates at	
	(c) Cold working (d) By increasing int	er-precipitate spacing			
	(b) Annealine in the	air			
	(a) Grain refinement				
Q57.	The method to incre	ase the yield strength of	of a crystalline materia	l is:	
	(a) 10%	(b) 21%	(c) 33%	(d) 100%	
	spherical particle inc	creases by:			
Q56.	If the interfacial en	ergy increases by 10 ⁶	%, the homogeneous	nucleation barrier for a	
	(a) $\frac{3}{r}$	(b) $\frac{r}{3}$	(c) 3 <i>r</i>	(d) $\frac{\pi r}{3}$	
Q55.	For a spherical FCC	crystal of radius r , th	e volume to surface ra	tio is given by:	
	(a) 3×10^{17} sec	(b) 2×10^{26} sec	(c) 3×10^3 sec	(d) 3×10^4 sec	
	taken by a vacancy t	o jump to an adjacent	site, is:		
Q54.	If the enthalpy of motion of a vacancy, at temperature $25^{\circ}C$, is 100 KJ mole^{-1} , the time				

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q62.	If copper has bond energy of 56 $KJ(mole)^{-1}$, the enthalpy of the atomization of copper			
	in the same unit is	approximately:		
	(a) 56	(b) 112	(c) 336	(d) 672
Q63.	A unit cell has $a =$	$5 \overset{\circ}{A}, b = 8 \overset{\circ}{A}, c = 3 \overset{\circ}{A}, \alpha$	$=90^{\circ}, \beta = 65^{\circ}, \gamma = 54^{\circ}$. The space lattice for this
	unit cell is:			
	(a) Orthorthombic		(b) Monoclinic	
	(c) Rhombohedral		(d) Triclinic	
Q64.	The Miller indices	of the line of intersect	ion of a $(1\overline{1}1)$ and a $($	$(1\overline{1}0)$ planes are:
	(a) $\left[1\overline{1}0\right]$	(b) [210]	(c) $\left[\overline{1}\overline{1}0\right]$	(d) $\begin{bmatrix} 1 \overline{1} 1 \end{bmatrix}$
Q65.	The t -vector is par	callel to the b -vector in	n the dislocation of the	e type:
	(a) Screw	(b) Edge	(c) Mixed	(d) Frenkel defect
Q66.	Assuming the idea	$1 \frac{C}{r}$ ratio for the HC.	$P Ti$ (with $a = 2.95 A^{\circ}$), the radius of the largest
		<i>a</i> interstitially in <i>Ti</i> ; is:		
	(a) $0.53 A^0$	(b) $0.66 A^0$	(c) $0.61 A^0$	(d) $0.96 A^0$
Q67.	The Fermi level (E	E_F) depends on the len	igth L of the linear so	lid as:
	(a) $\frac{1}{I^2}$	(b) $\frac{1}{I^3}$	(c) $\frac{1}{L}$	(d) Independent L
Q68.	The first measured	T_c in a ceramic super	conductor by Bednorz	and Mueller was:
	(a) 04 <i>K</i>	(b) 23 <i>K</i>	(c) 34 <i>K</i>	(d) 90 <i>K</i>
Q69.	If the Fermi energy	y of silver is 5.5 eV,	the wave number of t	he fastest electron at $0^0 K$
	has the magnitude	1		
	(a) 0.85×10^{10}	(b) 7.54×10 ¹⁰	(c) 1.20×10^{10}	(d) 0.19×10^{10}
Q70.	A cobalt k_{α} radiat	ion of wavelength 1.7	$9 \overset{0}{A}$ is used in a came	era of radius 57.3mm. The
		e powder pattern of F	CC crystal ($a = 4.05 A$	$\stackrel{0}{A}$), taken with this camera,
	is: (a) 45 <i>mm</i>	(b) 51 <i>mm</i>	(c) 75 <i>mm</i>	(d) 90 mm

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Q71. The physical phenomenon, generated due to the transfer of momentum is: (a) Thermal conductivity (b) Viscosity (c) Diffusion (d) Elasticity The liquification of helium is possible: Q72. (b) Below $-268^{\circ}C$ (a) At ordinary temperature (d) Below $-83^{\circ}C$ (c) At $-196^{\circ}C$ Q73. Internal energy of system changes in: (a) Isothermal change (b) Adiabatic change (c) Free expansion (d) Cyclic process According to celebrate Clausius theorem: Q74. (b) $\oint \frac{dQ}{T} < 0$ (a) $\oint \frac{dQ}{T} > 0$ (c) $\oint \frac{dQ}{T}$ = non-zero constant (d) $\oint \frac{dQ}{T} = 0$ For a perfectly black-body, the absorption power is: Q75. (a) One (b) More than one (c) Less than one (d) Zero Wien's displacement law is: Q76. (b) $\frac{1}{3}\frac{\lambda}{T} = \text{constant}$ (a) $\lambda T = \text{constant}$ (d) $\frac{\lambda T}{V} = \text{constant}$ (c) $\frac{\lambda}{TV} = \text{constant}$ Q77. A Carnot engine works between ico temperature $(0^{\circ}C)$ and the steam temperature $(100^{\circ}C)$. Its efficiency is: (a) 36.6% (b) 37.8% (c) 26.8% (d) 73.2% Q78. Clausius-Clapeyron equation is: (b) $\frac{dP}{dT} = \frac{L}{T(V_2 - V_1)}$ (a) $\frac{dP}{T} = L(V_2 - V_1)$ (d) $\frac{dP}{dT} = \frac{T}{L(V_2 - V_1)}$ (c) $dT = \frac{L}{T} (V_2 - V_1) dp$ **Head office Branch office**

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q79. The number of allowed modes per unit volume in the wavelength range λ and $\lambda + d\lambda$ is:

(a)
$$\frac{8\pi}{\lambda^4} d\lambda$$
 (b) $\frac{8\pi\lambda^2}{C^3} d\lambda (C = \text{speed of light})$
(c) $\frac{4\pi\lambda^2}{C^3} d\lambda (C = \text{speed of light})$ (d) $\frac{4\pi}{\lambda^4} d\lambda$

Q80. The critical temperature of Vander Waals gas is:

- (b) $\frac{8a}{27Rb} (a \& b = Vander Walls parmeters, R = Gas constant)$ (c) $\frac{8a}{27b}$ (d) $\frac{a}{27b^2}$
- Q81. A body is moving uniformly on a circular path with speed v. The magnitude of th change in its velocity when it has swept an angle θ , is:

(a)
$$2v\sin\frac{\theta}{2}$$
 (b) $2v\sin\theta$ (c) $2v\cos\theta$ (d) $2v\cos\frac{\theta}{2}$

Q82. A particle is moving with 90% of the speed of light. The ratio of its relativistic mass with its rest mass is approximately:

	(a) 2.3	(b) 3.0	(c) 5.0	(d) 2.0
Q83.	The ratio $\left(\frac{\partial V}{\partial T}\right)_P$	s negative for:		
	(a) Water at $10^{\circ}C$		(b) Ice at $0^0 C$	
	(c) Water between	$0^{\circ}C$ and $4^{\circ}C$	(d) Water at $100^{\circ}C$	
Q84.	The hydrogen gas	ejecting away from a por	rus plug at 300 K show	vs:
	(a) Cooling effect		(b) Heating effect	
	(c) Sometimes coo	ling sometimes heating	(d) Coating effect	

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

<u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q85. A Gaussian surface encloses no charge only one of the following is true for a point inside it:
 - (a) Electric field must be zero (b) Electric potential must be zero
 - (c) Electric field and potential are zero (d) Electric flux is zero
- Q86. Extremely low temperature can be produced by one of the following:
 - (a) Adiabatic demagnetization of paramagnetic salt
 - (b) Adiabatic magnetization of paramagnetic salt
 - (c) Isothermal magnetization of diamagnetic salt
 - (d) Isothermal demagnetization of diamagnetic salt
- Q87. An electromagnetic wave, going through vacuum, is described by $E = E_0 \sin(kx - wt), B = B_0 \sin(kx - wt)$. Which one of the following is true?
 - (a) $E_0 k = B_0 w$ (b) $E_0 B_0 = w k$
 - (c) $E_0 w = B_0 k$ (d) $E_0 B_0 = fk$ ($w = 2\pi f$)
- Q88. The dielectric constant of a material at optical frequencies is mainly due to
 - (a) Ionic polarizability (b) Electric polarizability
 - (c) Dipolar polarizability (d) Ionic and dipolar polarizabilities

Q89. A clock moves away from an observer with a uniform velocity. This clock would seem to lose 1 minute per day if it moves with the velocity:

- (a) $1.12 \times 10^7 m / \sec$ (b) $2.24 \times 10^7 m / \sec$ (c) $12.24 \times 10^7 m / \sec$ (d) $1.12 \times 10^6 m / \sec$
- Q90. A beam of metal, supported at the two ends, is loaded at the centre. The depression in terms of the Young modulus (Y), at the centre is proportional to:

(a)
$$Y^2$$
 (b) Y (c) $\frac{1}{Y}$ (d) $\frac{1}{Y^2}$

Q91. Mean free path of the molecules of a gas at pressure P and temperature T is $2\mu m$. If the pressure and temperature are doubled, the mean free path of the molecules would be

(a) $2 \times 10^{-6} m$ (b) $2 \times 10^{-6} cm$ (c) $12 \times 10^{-5} m$ (d) $20 \times 10^{-6} m$

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q92. If the radius of a spherically symmetric black-body radiation enclosure becomes 1/4 th of the original, the temperature will become (assuming adiabatic process)
 (a) Four times
 (b) Eight times
 (c) Doubled
 (d) Sixteen times
- Q93. The Maxwell equation that remains unchanged when the medium is changed, is as follows:

(a)
$$\vec{\nabla} \cdot \vec{E} = \rho / \epsilon_0$$
 (b) $\vec{\nabla} \cdot \vec{B} = 0$

(c)
$$\vec{\nabla} \times \vec{E} = -\frac{1}{C^2} \frac{\partial \vec{E}}{\partial t}$$
 (d) $\vec{\nabla} \times \vec{B} = \mu_0 \vec{J} + \mu_0 \in_0 \frac{\partial \vec{E}}{\partial t}$

Q94. If a plane *EM* wave propagating in space has an electric field of amplitude $9 \times 10^3 V / m$, the amplitude of magnetic field as:

(a) 2.7×10^{12} Tesla (b) 9.0×10^{-3} Tesla

(c)
$$13.0 \times 10^{-4}$$
 Tesla (d) 3.0×10^{-5} Tesla

Q95. For a transmission line with homogeneous dielectric, the capacitance per unit length is C, relative permittivity of dielectric is \in_r , and velocity of light in free space is v. The characteristic impedance Z_0 is equal to:

(a)
$$\frac{\epsilon_r}{\nu C}$$
 (b) $\frac{\epsilon_r}{\sqrt{\nu C}}$ (c) $\frac{\sqrt{\epsilon_r}}{V_c}$ (d) $\sqrt{\frac{\epsilon_r}{\nu C}}$

Q96. One of the following is a doubly magic nucleus?

(a) ${}^{14}_{7}N_{7}$ (b) ${}^{17}_{8}O_{9}$ (c) ${}^{208}_{82}Pb_{126}$ (d) ${}^{209}_{82}Pb_{127}$

Q97. The life time of a free neutron to decay into a proton, an electron and an antineutrino is approximately:

(a)
$$10^{-23}$$
 sec (b) 10^{-20} sec (c) 10^{-8} sec (d) 10^{3} sec

Q98. The process $K^0 \to \pi^+ \pi^-$ is governed by the weak interaction. It is an example of a:

- (a) Non-leptonic decay
- (b) Leptonic decay
- (c) Semi-leptonic decay
- (d) Leptonic as well as semi-lemptonic decay

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q99.	The typical radius (R) of a nucleus varies with its mass number as:			
	(a) $R \sim A^{1/5}$	(b) $R \sim A^{1/3}$	(c) $R \sim A^{1/4}$	(d) $R \sim A^{1/6}$
Q100.	Two nuclei are said	to be isobars:		
	(a) If their mass num	ber is same		
	(b) If their atomic nu	mber is same		
	(c) If their neutron n	umber is same		
	(d) If their mass num	ber and atomic numb	er are same	
Q101.	The de Broglie wave	elength of an electron,	, accelerated through a	potential of 150 volts is
	approximately:			
	(a) 1.004 Å	(b) $2.004 \overset{0}{A}$	(c) $3.004 \overset{0}{\text{A}}$	(d) $4.004 \overset{0}{A}$
Q102.	Typical life time of t	he strong interaction i	in the realm of nuclear	
	(a) 10^{-8} sec	(b) 10^{-10} sec	(c) 10^{-20} sec	(d) 10^{-23} sec
Q103.	If H is a Hermitian	matrix, then e^{iH} is on	e of the following:	
	(a) Hermitian matrix		(b) Unitary matrix	
	(c) Orthogonal matri	X	(d) Null matrix	
Q104.	If A is a skew-symm	netric matrix and R is	s its rank, then:	
	(a) $R = 1$	(b) $R \le 1$	(c) $R > 1$	(d) $R \ge 1$
Q105.				$qA^2 = 0$ then p and q
	values for the matrix	$A = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix} \text{ are one}$	e of the following:	
	(a) $p = \frac{2}{5}, q = \frac{1}{5}$		(b) $p = -\frac{2}{5}, q = \frac{1}{5}$	
	(c) $p = \frac{2}{5}, q = -\frac{1}{5}$		(d) $p = -\frac{2}{5}, q = -\frac{1}{5}$	
Q106.	The value of the Leg	endre polynomial P_n	(x) for $n = 3$, is:	
	(a) $\left(\frac{5x^3+3x}{2}\right)$	(b) $\left(\frac{5x^3+3x}{1}\right)$	(c) $\left(\frac{5x^3-3x}{2}\right)$	$(d)\left(\frac{5x^3-3x}{1}\right)$

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q107. If A_{μ} and B^{ν} are covariant and contravariant tensors of rank 1, then $(A_{\mu}B^{\nu})$ corresponds

to:

(a) Contravariant tensor of rank one (b)

(c) Mixed tensor of rank one

- (b) Covariant tensor of rank one(d) Mixed tensor of rank two
- Q108. One of the following recurrence relations is correct for the Hermite polynomial $H_n(x)$:
 - (a) $H'_n(x) = 2(n+1)H_{n+1}(x)$ (b) $H'_n(x) = 2(n-1)H_{n-1}(x)$
 - (c) $H'_n(x) = 2nH_{n+1}(x)$ (d) $H'_n(x) = 2nH_{n-1}(x)$
- Q109. The value of the Bessel functions $[J_{1/2}(x)]^2 + [J_{-1/2}(x)]^2$ is one of the following:

(a)
$$\frac{2}{\pi x}$$
 (b) $\frac{\pi x}{2}$ (c) $\sqrt{\frac{2}{\pi x}}$ (d) $\sqrt{\frac{\pi x}{2}}$

Q110. The generating functional for the Bessel function is:

(a)
$$e^{x(z+z^{-1})} = \sum_{n=-\infty}^{+\infty} J_n(x) z^n$$

(b) $e^{x(z-z^{-1})} = \sum_{n=-\infty}^{+\infty} J_n(x) z^n$
(c) $e^{\frac{x(z+z^{-1})}{2}} = \sum_{n=-\infty}^{+\infty} J_n(x) z^n$
(d) $e^{\frac{x(z-z^{-1})}{2}} = \sum_{n=-\infty}^{+\infty} J_n(x) z^n$

Q111. One of the following is true:

(a)
$$\frac{d}{dx} \Big[x^n J_n(x) \Big] = x^{n-1} J_{n-1}(x)$$

(b) $\frac{d}{dx} \Big[x^n J_n(x) \Big] = x^{n+1} J_{n-1}(x)$
(c) $\frac{d}{dx} \Big[x^n J_n(x) \Big] = x^n J_{n+1}(x)$
(d) $\frac{d}{dx} \Big[x^n J_n(x) \Big] = x^n J_{n-1}(x)$

Q112. In the Bessel equation $x^2 \frac{d^2 y}{dx^2} + (x^2 - n^2)y + x\frac{dy}{dx} = 0$

- (a) x = 1 is a regular singular point
- (b) x = 1 is an irregular singular point
- (c) x = 0 is a regular singular point (d) x = 0
- (d) x = 0 is an irregular singular point

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q113. The eigenvectors of the matrix
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
 are as follows:
(a) $\begin{pmatrix} 1 \\ i \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -i \end{pmatrix}$
(b) $\begin{pmatrix} 1 \\ i \end{pmatrix}$ and $\begin{pmatrix} -1 \\ i \end{pmatrix}$
(c) $\begin{pmatrix} i \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -i \\ 1 \end{pmatrix}$
(d) $\begin{pmatrix} i \\ 1 \end{pmatrix}$ and $\begin{pmatrix} i \\ -1 \end{pmatrix}$

Q114. The first term in the Fourier series of $f(x) = \frac{(\pi - x)^2}{4}$ in the range $(-\pi < x < \pi)$ is:

(a)
$$\frac{\pi}{12}$$
 (b) $\frac{\pi^2}{6}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi^2}{12}$

Q115. Consider the following triangular periodic wave of period T:

Q116. The Wroskian $W(y_1, y_2)$ for the two solutions $y_1(x)$ and $y_2(x)$ of the second order differential equation is:

(a)
$$W = y_1 y_2' - y_2 y_1' \left(y_1' = \frac{dy_1}{dx} \right)$$

(b) $W = y_1 y_2' + y_2 y_1' \left(y_2' = \frac{dy_2}{dx} \right)$
(c) $W = y_1 y_2' - y_1' y_2'$
(d) $W = y_1 y_2' + y_1' y_2'$

Q117. The difference $\left(x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}\right)$ can be expressed in terms of the polar coordinates (r, θ, ϕ)

(a)
$$\frac{\partial}{\partial r}$$
 (b) $\frac{\partial}{\partial \theta}$ (c) $\frac{\partial}{\partial \phi}$ (d) $\frac{\partial}{\partial \phi} + \frac{\partial}{\partial \theta}$

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q118. The square of the orbital angular momentum operator $\vec{L} = -1(\vec{r} \times \vec{\nabla})$ can be expressed as:

(a) $\left \vec{L}\right ^2 = -r^2 \vec{\nabla}^2 + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right)$	(b) $\left \vec{L}\right ^2 = r^2 \vec{\nabla}^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right)$
(c) $\left \vec{L}\right ^2 = -r^2 \vec{\nabla}^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right)$	(d) $\left \vec{L}\right ^2 = r^2 \vec{\nabla}^2 + \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r}\right)$

Q119. One of the following functions form an orthonormal set for the Languerre polynomial

 $(L_n(x)):$ (a) $e^{-x}L_n(x)$ $0 \le x \le \infty$ (b) $e^{-x/2}L_n(x)$ $0 \le x \le \infty$ (c) $e^{-x}L_n(x)$, $-\infty \le x \le +\infty$ (d) $e^{-x}L_n(x)$ $-\infty \le x \le +\infty$

Q120. The orthonormality relation of the Hermite polynomials is:

(a)
$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{n!}{2^n} \sqrt{\pi} \delta_{nm}$$
 (b) $\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{n!}{2^n} \sqrt{\pi} \delta_{nm}$
(c) $\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \frac{\sqrt{\pi}}{2^n n!} \delta_{nm}$ (d) $\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = 2^n n! \sqrt{\pi} \delta_{nm}$

Q121. Two coherent sources, whose intensity ratio is 25:16, produce interference fringes. The ratio of the maximum and minimum intensities of the fringe system will be:

(a) 25:1 (b) 25:16 (c) 5:4 (d) 81:1

Q122. Two independent light sources can not produces interference pattern because:

(a) their phase difference can not be constant

(b) their frequencies can not be the same

(c) their amplitudes can not be the same

(d) their phase difference may be constant but amplitudes can not be the same

- Q123. In the Lloyd mirror experiment, the central fringe is:
 - (a) Dark (b) Bright (c) Coloured (d) Not formed

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Q124.	. Resolving power of the Febery Perrot interferometer is:				
	(a) Smaller than the Michelson interferometer				
	(b) Larger than Michelson interferometer				
	(c) Equal to the Mich	elson interferometer			
	(d) Double of the Mic	chelson interferometer			
Q125.	If the outer orbit of an	n contains two electron	is, the possible multipl	icity would be:	
	(a) 1,3	(b) 1	(c) 3	(d) 0	
Q126.	The selection rules fo	r an atomic transition	is:		
	(a) $\Delta J = 0, \pm 1$	(b) $\Delta J = 0$	(c) $\Delta J = \pm 1$	(d) $\Delta J = 0, \pm 1, \pm 2$	
Q127.	For the hydrogen like	atoms transition is:			
	(a) ${}^{2}S_{1/2}$	(b) ${}^{2}P_{1/2}$	(c) ${}^{2}S_{0}$	(d) ${}^{2}S_{3/2}$	
Q128.	For an electron with t	he quantum number 1	= 2, the possible value	es of j are:	
	(a) $\frac{3}{2}, \frac{3}{2}$	(b) $\frac{5}{2}, \frac{3}{2}$	(c) $\frac{5}{2}, \frac{3}{2}, \frac{1}{2}$	$(d)\frac{3}{2},\frac{1}{2}$	
Q129.	Uhlenbeck and Gond	smit introduced the co	ncept of:		
	(a) Electron spin		(b) Electron charge		
	(c) Proton spin		(d) Neutron spin		
Q130.	Optical pumping is n	ot suitable for the gas	s laser because, in this	laser, the active atoms	
	have:				
	(a) Broad energy leve	ls			
	(b) Sharp energy leve	ls			
	(c) Large number of S				
	(d) Large number of Z	-			
Q131.			ess of population invers	sion is:	
	(a) The energy transfe				
	(b) The energy transfe				
	(c) The metastable sta				
	(d) The collision of el	ectron with the wall			

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 <u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q132. In a Frank-Herz experiment, one plots a graph between grid potential and plate current.

-	1	, I C		1
	The observed deep in	this curve is due to:		
	(a) Inelastic collision	of the e^- with atom	(b) Elastic collision of	of the e^- with atom
	(c) Inelastic collision	between atoms	(d) Elastic collision b	between atoms
Q133.	An unpolarized light	of intensity I_0 passes	s through a Nicole pri	sm, the intensity of the
	emergent light will be	e:		
	(a) <i>I</i> ₀	(b) $\frac{I_0}{3}$	(c) $\frac{I_0}{2}$	(d) $\frac{I_0}{4}$
Q134.	An unpolarized light	passes through a doub	bly refracting calcite c	rystal. If μ_0 and μ_e are
-		of the crystal for the o		
		(b) $\mu_e > \mu_0$	-	
0135				nose electric vector is at
Q155.		the optic axis. The em		
	(a) Unpolarized	the optic axis. The em	(b) Plane Polarized	
	(c) Circularly Polariz	ed	(d) Elliptically polari	zed
Q136.		xperiment, the fringes a		
	(a) Equal thickness of	-		5
	(b) varying thickness	of the air film		
	(c) Diffraction			
	(d) Reflection betwe	en the upper and lower	surface of the plane c	onvex lens
0137.	A zone plate has foca	al length $1m$ for $\lambda = 6$	$000 \stackrel{0}{A}$. The radius of t	he first transparent zone
L.	will be:	0		1
	(a) 0.077 <i>cm</i>	(b) 0.062 <i>cm</i>	(c) 0.200 <i>cm</i>	(d) 0.300 <i>cm</i>
0138.		s in a grating is increas	· · /	
C	(a) increase		(b) decrease	
	(c) remain constant		(d) first increase and	later on decrease

Head office fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q139.	. The reason behind the missing orders in a double slit Fraunhoffer diffraction pattern is:			
	(a) overlapping of the	e interference minima	with the diffraction ma	xima
	(b) overlapping of the	e interference maxima	with the diffraction mi	nima
	(c) overlapping of the	e interference maxima	and minima	
	(d) overlapping of the	e diffraction maxima a	nd minima	
Q140.	In the Compton scatte	ering, there is an:		
	(a) inelastic collision	of a photon with a free	e <i>e</i> ⁻	
	(b) inelastic collision	of a photon with a pro	oton	
	(c) inelastic collision	of a photon with a neu	itron	
	(d) inelastic collision of a photon with a bound electron of an atom			
Q141.	An elementary partic	le that experiences onl	y the weak interaction	of nature is:
	(a) Neutron	(b) Proton	(c) Electron	(d) Neutrino
Q142.	An elementary partic	le that participate only	in the strong interaction	on is a:
	(a) Quart	(b) Gluon	(c) Meson	(d) Baryon
Q143.	A pure Fermi-transiti	on in the nuclear β -de	ecay is the one where:	
	(a) $\Delta J = \pm 1, O^+ \rightarrow O^-$	÷	(b) $\Delta J = 0, O^+ \rightarrow O^+$	
	(c) $\Delta J = \pm 2, O^+ \rightarrow O$	+	(d) $\Delta J \Longrightarrow 3, O^+ \to O$	+
Q144.	Hadrons are the par	ticles which are calle	ed as baryons, meson	s, hypsons, etc. Their
	characteristics feature	es is:		
	(a) they always exper	ience electromagnetic	interaction	
	(b) they always expen	rience weak interactior	1	
	(c) they always exper	ience strong interactio	n	

- (d) they always experience electromagnetic, weak and strong interaction
- Q145. A photon, which is the quantum of light radiation, coming out from a source:
 - (a) is always a relativistic particle in the free space
 - (b) can be made non-relativistic in the free space
 - (c) can be made relativistic as well as non-relativistic in the free space
 - (d) can be made stationary in the free space

Head office

fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 Branch office Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q146.	146. The number of quarks in a typical meason is always:			
	(a) Three	(b) Two	(c) Four	(d)Five
Q147.	(a) Three (b) Two (c) Four (d) Five 147. The following nuclear β -decay $\underset{0^+}{\overset{6}{He}} \rightarrow \underset{1^+}{\overset{6}{Li}} + e^- + \overline{\nabla}, \Delta J = 1$ is an explicit example			
	(a) Forbidden transiti		(b) Mixed transition	
	(c) Pure Fermi transition		(d) Pure Gamow-Teller transition	
Q148.	48. Geiger's law for the "Range Energy" relationship for the α -particle is well known Infact, the range <i>R</i> and velocity <i>V</i> of the α -particle are related by:			
Q149.	(a) $R \alpha v^5$ The typical energy of		(c) $R \alpha v^3$	(d) $R\alpha v^2$
	(a) Approximately in the range KeV		(b) Approximately in the range MeV	
	(c) Approximately in the range GeV		(d) Approximately in the range eV	
Q150.	A radioactive substance has a half life period of 30 days. The time taken, for $\frac{3}{4}$ of the			
	original number of atoms to disintegrate, is:			
	(a) 100 days	(b) 80 days	(c) 120 days	(d) 60 days

<u>Head office</u> fiziks, H.No. 40 D, G.F, Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

<u>Branch office</u> Anand Institute of Mathematics, 28-B/6, Jia Sarai, Near IIT Hauz Khas, New Delhi-16