

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

BHU-2013 (Geo-Physics)

- Let N coplanar forces each of magnitude F, where each force is making an angle $\frac{2\pi}{N}$ Q.1. with the preceding one, act from a point. Then the vector sum is
 - (1) $N\overrightarrow{F}$
- (2) \overrightarrow{F}
- $(3) \frac{NF}{2}$
- (4) Zero (vector)
- Q.2. A balloon of mass 100 kg is stationary at a height of 100m above the ground. A man of 50 kg is staunding stationary on a rope ladder hanging from the bottom of the balloon. When the man starts climbing up of the ladder, with a speed of 0.3 m/s relative to the rope, the balloon will
 - (1) remain stationary

- (2) move downward with a speed of 0.3 m/s
- (3) move upwards with a speed of 0.3 m/s (4) move downward with a speed of 0.1 m/s
- Q.3. Consider three observers A, B and C, each of whom is at rest in different inertial frames of references. A flash of light is emitted by observer A, who observes the light to travel at speed c. The frame of the observer B is moving away from A at a speed of c/4 and that of C is moving toward A with a speed of c/4. Then according to Galilean kinematics
 - (1) B will measure the speed of light emitted by A as 5c/4, while C will measure it as 3c/4
 - (2) B will measure the speed of light emitted by A 3c/4, while C will measure 5c/4
 - (3) Both will measure it as 3c/4
 - (4) Both will measure it as c
- If the earth is treated as a sphere of radius R and mass M, its angular momentum about Q.4. the axis of its diurnal motion with period T is
 - (1) $\frac{4\pi MR^2}{5T}$ (2) $\frac{2\pi MR^2}{T}$ (3) $\frac{MR^2T}{2\pi}$ (4) $\frac{\pi MR^3}{T}$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.5. Let the displacement of an oscillator be given by the expression

$$y = 4\cos^2\left(\frac{r}{2}\right)\sin(1000t)$$

Then	the number	er of inde	pendent	simple	harmonic	motions	contained	in this	expression	is
THOH	the mambe	or muc	penaeni	simple	namonic	monons	contained	m uns	capicosion	13

(1)4

(2) 3

(3) 2

(4) 1

Q.6. The graph of restoring force vs time for a linear harmonic oscillator is

- (1) sinusoidal
- (2) parabolic
- (3) circular
- (4) a straight line

Q.7. Conservation of four-vector momentum implies conservation of

(1) momentum only

- (2) energy only
- (3) both momentum and energy
- (4) mass and energy

Q.8. A pion at rest decays in a time interval of 24 ns. An observer in the laboratory relative to whom the pion is in motion at a speed of u = 0.8c will measure the time interval as

- (1) 24 ns
- (2) 40 ns
- (3) 19.2 ns
- (4) 30 ns

Q.9. A constant torque acting on a uniform circular wheel changes its angular momentum from a_0 to $4a_0$ in 4 seconds. The magnitude of this torque is

- (1) a_0
- (2) $2a_0$
- (3) $\frac{3a_0}{4}$
- (4) $3a_0$

Q.10. A body is moved along a straight line by a machine delivering constant power. The distance moved by the body in time t is proportional to

- (1) $t^{1/2}$
- (2) $t^{3/4}$
- (3) $t^{3/2}$
- $(4) t^2$

Q.11. It is possible that the Newtonian theory of gravitation may need to be modified at short ranges. Suppose that the potential energy between two masses m and m' is given by $V(r) = \frac{Gmm'}{r} (1 - ae^{r/\lambda}).$ For short distance $r << \lambda$, the force between m and m' is given by

 $(1) F = -\frac{Gmm'}{r^2}$

 $(2) F = -\frac{Gmm'a}{\lambda r}$

 $(3) F = -\frac{Gmm'(1-a)}{r^2}$

(4) $F = -\frac{Gmm'(1+a^2)}{r^2}$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

body is 2m from the origin and the 3 kg body is 3 m from the origin. The position of the

(3) 2.8m

(4) 3.0 m

Q.12. A 2 kg body and a 3 kg body are moving along the x-axis. At a particular instant the 2 kg

Q.13. A particle of mass m is moving in a horizontal circle of radius r under a centripetal force

centre of mass from the origin is

(2) 2.5m

(1) 2.0m

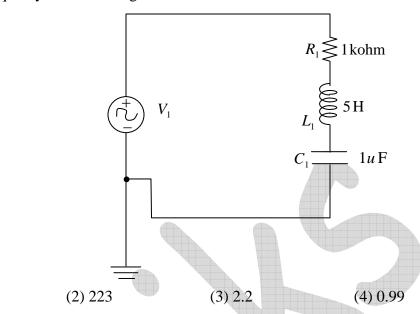
fiziks, H.No. 40-D, G.F., Jia Sarai,

Near IIT, Hauz Khas, New Delhi-16

Phone: 011-26865455/+91-9871145498

	which is equal to $\frac{-k}{r^2}$, where k is a constant. Then the total energy of the particle is					
	(1) 0	$(2) \frac{-k}{r}$	$(3) \frac{-k}{2r}$	$(4) \frac{k}{2r}$		
Q.14.	The rotation of a Fou	cault's pendulum deno	tes			
	(1) the spinning motion	on of earth	(2) that each is station	nary		
	(3) the rotational mot	ion of the earth	(4) linear motion of the	ne earth		
Q.15.	The centripetal force	required to keep a 4 k	g mass moving in a ci	rcle of radius 0.8m at a		
	speed of $6m/s$ is					
	(1) 280 <i>N</i>	(2) 180 <i>N</i>	(3) 360 N	(4) 1000 N		
Q.16.	The co-ordinates of a	a particle moving in th	ne xy plane is given as	s a function of time by		
	$x = 1 + 2t^2 \text{ and } y = 2$	$t+t^3$, given in metres	. What is the magnitud	le of the velocity of the		
	particle at time $t = 2s$?				
	(1) $15.1 m/s$	(2) $16.1 m/s$	(3) $8.2 \ m/s$	(4) $14.2 \ m/s$		
Q.17.	The moment of iner	tia of a uniform sph	ere of radius R and	mass M , with its axis		
	through the center is					
	$(1) MR^2$	$(2) \frac{1}{2}MR^2$	$(3) \frac{2}{5}MR^2$	$(4) \frac{3}{5}MR^2$		
Q.18.	Let a force of 4 N ca	uses a displacement of	0.02m. Then the force	constant is		
	(1) $0.08 N - m$	(2) $200 N - m$	(3) $200 N - m^{-1}$	$(4) \ 0.08N - m^{-1}$		
Q.19.	A simple harmonic of	oscillator has a period	$T = \frac{2\pi}{3}$. If the ampli	tude of the oscillator's		
			celeration during its mo			
	(1) $6 m/s^2$	(2) $18 \ m/s^2$	(3) $8 m/s^2$	(4) $20 \ m/s^2$		
Head o	Head office Branch office					

Anand Institute of Mathematics,


28-B/6, Jia Sarai, Near IIT

Hauz Khas, New Delhi-16

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.20. What is the quality factor of the given circuit?

Q.21. A 100 Hz A.C. is flowing in a coil of inductance 7 millihenry. The reluctance of the coil is

(1) 4.44Ω

(1)999

- (2) 4.4Ω
- $(3) 7 \Omega$
- $(4) 14 \Omega$

Q.22. Let a plane electromagnetic wave be associated with a value of electric field E = 100 V/m and magnetic field H = 0.25 A/m. Then maximum energy flow is

- (1) $50 W/m^2$

- (2) $25 W/m^2$ (3) $12.5 W/m^2$ (4) $6.25 W/m^2$

Q.23. The average of the function $f(x) = \sin(x)$ in the interval $(0, \pi)$ is

- (1) zero
- $(2) \frac{2}{-}$
- $(3) \frac{\pi}{2}$
- (4) 2π

Q.24. A plane electromagnetic wave of frequency 25 MHz travels in free space along the xdirection. At a particular point in space and time the magnitude of the electric field is E = 6.3 V/m. What is the magnitude of the magnetic induction B at this point?

- (1) $6.3 \times 10^{-10} \,\mathrm{T}$ (2) $2.1 \times 10^{-8} \,\mathrm{T}$ (3) $2.1 \times 10^{-10} \,\mathrm{T}$ (4) $6.3 \times 10^{-8} \,\mathrm{T}$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.25.	A transistor has a current gain factor $\alpha = 0.95$. The transistor is connected with emitter				
	grounded. What is the	ne change in the collect	or current when the ba	se current is changed by	
	0.1 mA?				
	(1) 9.5 mA	(2) 19 mA	(3) 1.9 mA	(4) 0.95 mA	
Q.26.	An intrinsic Ge of	erystal has an intrin	sic concentration N_i	$=10^{13} / \text{cm}^3$ (at room	
	temperature). Who	en doped with antim	ony, the hole densi	ty N_h is decreased to	
	10^{11} / cm ³ at room te	emperature. Then the m	ajority carrier density	is	
	(1) 10^{15} / cm ³	(2) $10^2 / \text{cm}^3$	$(3) 10^{24} / \text{cm}^3$	$(4) 10^{12} / \text{cm}^3$	
Q.27.	A change of 200 n	nV in base emitter vo	ltage causes a change	e of $100\mu\text{A}$ in the base	
	current. Then the inp	out resistance of the tra	nsistor becomes		
	(1) 20 Ω	$(2) 200 \Omega$	(3) 1 kΩ	(4) $2 \text{ k}\Omega$	
Q.28.	A plane electromagn	netic wave $E_x = 100 \text{co}$	$\cos(6\times10^8t+4x)\text{V/m}\text{ p}$	propagates in a medium.	
	Then the dielectric constant of the medium is				
	(1) 1	(2) 2	(3) 4	(4) 6	
Q.29.	For a silicon diode the	he value of the forward	bias voltage typically		
	(1) must be greater t	han 0.3 V			
	(2) must be greater t	han 0.7 V			
	(3) depends on the w	vidth of the depletion re	egion		
	(4) depends on the c	oncentration of the maj	ority carriers		
Q.30.	An amplifier that op	erates in the linear regi	on at all times is		
	(1) Class A	(2) Class AB	(3) Class C	(4) Class C	
Q.31.	A band-pass filter h	as resonant frequency	of 950 Hz with the up	oper cutoff frequency as	
	3000 Hz. Then the lo	ower cutoff frequency i	S		
	(1) 2050 Hz	(2) 1500 Hz	(3) 300 Hz	(4) 100 Hz	
Q.32.	Reluctance offered b	by a coil having no resis	stance in an a.c. circuit	is equal to	
	(1) ωL	$(2) \frac{1}{\omega L}$	$(3) \omega^2 L^2$	(4) ω LR	

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- **Q.33.** In an L-C-R series resonant circuit the current through the resistance and the current through inductance have a phase difference of value
 - $(1)\frac{\pi}{2}$
- $(2) \frac{\pi}{2} \qquad \qquad (3) \frac{\pi}{4}$
- (4) 0
- **Q.34.** In cylindrical co-ordinates the vector magnetic potential is $\vec{A} = 50 \, r^2 \, \vec{a}_x$ Wb/m in a certain region of free space. The value of magnetic induction is
 - (1) $-100 \,\mathrm{r} \, \overset{\rightarrow}{a_r} \,\mathrm{Wb/m^2}$

(2) $-100 \,\mathrm{r} \, \stackrel{\rightarrow}{a_{\phi}} \,\mathrm{Wb/m}^2$

 $(3) - 50 \,\mathrm{ra} \xrightarrow{a} \,\mathrm{Wb/m^2}$

- $(4) 50 \,\mathrm{r} \, \stackrel{\rightarrow}{a_{\pi}} \,\mathrm{Wb/m^2}$
- Q.35. An 800 MHz traveling plane wave has an average Poynting vector of 8 mW/m² and the velocity of the wave is 1×10^8 m/s. Then the wavelength of the plane wave is
 - (1) 1 m
- (2) 0.5 m
- (3) 0.25 m
- (4) 0.125 m
- **Q.36.** The electric field of a plane EM wave traveling along the z-axis is

$$E_z = (E_z x + E_{0y} y) \sin(\omega t - kz + \phi)$$

Then the magnetic field B_{z} is

- $(1) \left(-E_{0x}x + E_{0y}y\right)\cos(\omega t kz + \phi)/c \qquad (2) \left(E_{0x}x + E_{0y}y\right)\sin(\omega t kz + \phi)/c$
- (3) $\left(-E_{0x}x + E_{0x}y\right)\sin(\omega t kz + \phi)/c$ (4) $\left(E_{0x}x + E_{0x}y\right)\cos(\omega t kz + \phi)/c$
- Q.37. Which of the following Maxwell equations implies that there is no magnetic monopoles?
 - (1) $\Delta \cdot E = \rho / \varepsilon_0$

(2) $\Delta \cdot B = 0$

(3) $\Delta \times E = -\partial \mathbf{B} / \partial t$

- (4) $\Delta \times B = \mu_0 J + \mu_0 \varepsilon_0 \partial E / \partial t$
- Q.38. What is the electric flux density (or electric displacement) through each face of a cube, of side length 2 metres, that contains a central point charge of 2 coulombs?
 - $(1) 0.50 \text{ coulomb/m}^2$

 $(2) 0.33 \text{ coulomb/m}^2$

(3) 0.23 tesla

 $(4) 0.13 \text{ coulomb/m}^2$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.39.	In an $L-C-R$ circu	uit with an external for	rcing signal $f \sin \omega t$,	after a sufficiently long	
	time the current will o	oscillate with a frequen	ncy		
	$(1) \; \frac{1}{2\pi\sqrt{LC}}$	$(2) \frac{\omega}{2\pi\sqrt{LC}}$	$(3) \frac{\omega}{2\pi}$	$(4) \frac{\omega}{\pi}$	
Q.40.	If the temperature of a	a transistor rises by 10	$^{\circ}C$, which of the following	owing current doubles?	
	(1) I_C	$(2) I_B$	$(3) I_{CHO}$	(4) I_E	
Q.41.	Which of the following	ng statement is wrong?			
	(1) Voltmeter should	have high resistance			
	(2) Ammeter should h	nave low resistance			
	(3) Ammeter should b	pe placed in parallel ac	ross the electric circuit		
	(4) Voltmeter should	be placed in parallel ac	cross the electric circu	it	
Q.42.	When a current passing through a straight conductor is 1 mA, what is the magnetic				
	induction at a point 20	Ocm from the current c	carrying conductor?		
	(1) 1×10^{-7} tesla	(2) 2×10^{-7} tesla	(3) 1.5×10^{-10} tesla	(4) 2×10^{-10} tesla	
Q.43.	A radially pulsating c	harged sphere			
	(1) emits electromagn	etic radiation			
	(2) creates a static ma	gnetic field			
	(3) can set a nearby cl	harged particle into cir	cular motion		
	(4) creates a vacuum		,		
Q.44.	The avalanche effect	is observed in a diode,	when		
	(1) the forward voltag	ge exceeds the break-do	own voltage		
	(2) the heavily doped	diode is forward biase	d		
	(3) the reverse voltage	e exceeds the break-do	wn voltage		
	(4) the majority carrie	ers have enough energy	compared to valence	electrons	
Q.45.	An electromagnetic v	wave incident from a	rarer to a denser med	ium undergoes a phase	
	change of				
	(1) 0	$(2) \frac{\pi}{2}$	(3) π	$(4) 2\pi$	

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.46.	In a Fraunholer diffraction experiment with a slit width of 12×10^{-5} cm and with 6000 Å monochromatic light, the half angular width of the bright central maximum will be found					
	at		C			
	$(1) \frac{\pi}{4}$	$(2) \frac{\pi}{6}$	$(3) \frac{\pi}{3}$	$(4) \frac{\pi}{2}$		
Q.47.	The Brewster ar	ngle of a material with	refractive index 1.732	2 is		
	$(1) \frac{\pi}{4}$	$(2) \frac{\pi}{6}$	$(3) \frac{\pi}{3}$	$(4) \frac{\pi}{2}$		
Q.48.	A sound wave	travels from air to wa	ter. The angle of inc	idence is α_1 and the angle of		
	refraction is α_2	. Assuming Snell's law	v to be valid			
	$(1) \alpha_2 < \alpha_1$	$(2) \ \alpha_2 > \alpha_1$	$(3) \alpha_2 = \alpha_1$	(4) $\alpha_2 = 90^{\circ}$		
Q.49.	In a Newton's	rings experiment, the	e diameter of a certa	in order of the dark ring is		
	measured to be	double that of the seco	nd dark ring. The ord	er of the dark ring becomes		
	(1) 2	(2) 6	(3) 4	(4) 8		
Q.50.	In a Michelson	interferometer 200 fr	ringes cross the field	of view when the movable		
	mirror is moved	l through 0.0589 mm. 7	Then the value of wav	elength of light used is		
	(1) 5890 Å	(2) 4800 Å	(3) 5896 Å	(4) 6100 Å		
Q.51.	Consider the in	nterference between tv	wo sources of intens	sities I and $4I$. What is the		
	intensity at a point where the phase difference is $\frac{\pi}{2}$?					
	(1) 2 <i>I</i>	(2) 51	(3) 4 <i>I</i>	(4) 0		
Q.52.	Laser beam is c	considered to be coheren	nt because it consists	of		
	(1) many wavelength					
	(2) un-correlate	d wavelength				
	(3) co-ordinated	d waves of exactly the s	same wavelength			
	(4) divergent be	eam				

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

tiziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.53.	A beam of light of wavelength λ having an illumination I falls on a clean surface of
	sodium. If n photoelectrons with kinetic energy E are emitted, then

(1)
$$n \propto T^2$$
, $E \propto \frac{1}{I}$

(2)
$$n \propto I, E \propto \frac{1}{\lambda}$$

(3)
$$n \propto I, E \propto \lambda$$

(4)
$$n \propto \lambda, E \propto I$$

- **Q.54.** A star emits light with a peak wavelength at 200nm. The surface temperature is
 - (1) 20490 K
- (2) 18490 K
- (3) 16490 K
- (4) 14490 K

- **Q.55.** The energy of a photon with a wavelength 3cm is
 - $(1)3.143\times10^{-5}$
- $(2) 4.143 \times 10^{-5}$
- $(3) 2.143 \times 10^{-5}$
- (4) 5.143×10^{-5}
- Q.56. An electron accelerated through a potential difference of 10 kV hits a target to produce X-rays. The minimum wavelength of the X-rays produced is
 - (1) 1.3026×10^{-10} m

(2) 1.2306×10^{-10} m

(3) 1.2326×10^{-12} m

- (4) 1.3326×10^{-12} m
- Q.57. The diameters of the 5th and 15th Newton's rings are 0.4 cm and 0.6 cm, respectively. The radius of the plano-convex lens is 100cm and the wavelength of the light used is
 - (1) 5000 Å
- (2) 5880 Å
- (3) 5790 Å
- (4) 6000 Å
- Q.58. The velocity of extraordinary ray in a positive uniaxial crystal is
 - (1) least in a direction at right angles to optic axis
 - (2) equal to the velocity of ordinary ray
 - (3) maximum in a direction at the right angles to optic axis
 - (4) lesser than the velocity of ordinary ray
- **Q.59.** The areal spread of laser beam of wavelength 8×10^{-7} m and aperture 10^{-3} m traveling 10^6 km is

- (1) $4 \times 10^{10} \,\mathrm{m}^2$ (2) $8 \times 10^8 \,\mathrm{m}^2$ (3) $8 \times 10^{10} \,\mathrm{m}^2$ (4) $4 \times 10^{10} \,\mathrm{m}^2$
- Q.60. The readings of a Fahrenheit thermometer and a Centrigrade thermometer will be identical at the value of
 - $(1) 20^{\circ}$
- $(2) 20^{\circ}$ $(3) 40^{\circ}$
- (4) 40°

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.61.	• A turbine in a steam power plant takes steam from a boiler at 450°C and exhausts it into			
	a condenser at 100°	C. The maximum poss	ible efficiency is,	
	(1) 48%	(2) 60%	(3) 80%	(4) 100%
Q.62.	A lump of ice whos	se mass m is 200 gm	melts into water. The	e temperature remains at
	0°C throughout the	process. What is the	entropy change for the	e ice? (The latent heat of
	fusion of ice 300 kJ/	kg)		
	(1) 220 J/K	(2) 0.23 J/K	(3) 0.023 J/K	(4) 22 J/K
Q.63.	Isothermal curves co	orrespond to		
	(1) constant pressure		(2) constant volume	
	(3) constant entropy		(4) constant tempera	ature
Q.64.	The amount of mech	nanical work which ha	s to be done to compl	etely melt 1 gm of ice is
	(L = 80 cal/gm)			
	(1) 4.2 J	(2) 42 J	(3) 80 J	(4) 336 J
Q.65.	Under the steady sta	te, the temperature of a	a body	
	(1) increases with tir	ne		
	(2) decreases with time	me		
	(3) does not change	with time and it has to	remain the same at all	points of the body
	(4) does not change	with time, but may be	different at different p	oints of the body
Q.66.	The temperatures ins	ide and outside of a re	frigerator are 273° K	and 303°K respectively.
	Assuming that the	refrigerator cycle	is reversible, the en	nergy delivered to the
	surroundings for eve	ry joule of work done	is	
	(1) 9.9 J	(2) 8.1 J	(3) 10.1 J	(4) 9.1 J
Q.67.	A gas is compressed	at a constant pressure	of 50 N/m ² with a ch	ange of volume as 6 m ³ .
	Then 100 J energy i	s added to the gas. W	That is the change in the	he internal energy of the
	gas?			
	(1) 300 J	(2) 200 J	(3) 400 J	(4) 100 J

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.68.	• Two Carnot engines A and B have their sources at 327°C and 227°C, and sinks at				
	127°C and 27°C, re	espectively. Then the ra	atio of their efficiency	is	
	(1) 1:2	(2) 6:5	(3) 5:6	(4) 2:3	
Q.69.	Heat sinks are used	in power amplifires			
	(1) to increase output	ıt power			
	(2) to reduce heat lo	sses in the transistor			
	(3) to increase volta	ge gain			
	(4) to increase colle	ctor dissipation rating of	of the transistor		
Q.70.	The photoelectric t	hreshold for a metal i	s 3000 Å. The kineti	c energy of an electron	
	ejected from it by ra	adiation of wavelength	1200 Å is		
	(1) 9.93eV	(2) 6.2eV	(3) 4.5eV	(4) 7.5eV	
Q.71.	The specific heat of	a substance is a function	on of its		
	(1) mass		(2) weight		
	(3) volume		(4) molecular structu	ıre	
Q.72.	Two tuning forks A	and B which are vibrat	ing simultaneously pro	oduce 5 beats. Frequency	
	of <i>B</i> is 512 Hz. It is	seen that if one arm of	A is fixed, then the nu	imber of beats increases.	
	Frequency of A will	be			
	(1) 502 Hz	(2) 507 Hz	(3) 517 Hz	(4) 522 Hz	
Q.73.	Which of the follow	ring set of equations is	invariant under Lorentz	z transformation?	
	(1) Maxwell's equat	tion	(2) Schrodinger's eq	uation	
	(3) Newton's equati	on of motion	(4) Laplace equation	L	
Q.74.	Which of the follow	ring does not support po	arely wave nature of lig	ght?	
	(1) Interference		(2) Diffraction		
	(3) Polarization	_	(4) Photoelectric effe		
Q.75.	_			or which the threshold	
	wavelength of the p	hotoelectrons is 5420 Å	A. Then the work funct	ion is	
	(1) 2.76 eV	(2) 2.29 eV	(3) 1.00 eV	(4) 4.76 eV	

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

		·,···, ···, ···,	,			
Q.76.	76. If <i>A</i> and <i>B</i> are non-empty sets with <i>m</i> and <i>n</i> elements respectively, then the number of mapping from <i>A</i> into <i>B</i> is					
	(1) <i>mn</i>	(2) $m + n$	$(3) m^n$	$(4) n^m$		
Q.77.	If A has m elements	and B has n elements, t	then the number of ele	ements of $A \times B$ is		
	(1) <i>m</i>	(2) <i>n</i>	(3) <i>mn</i>	(4) m+n		
Q.78.	A factor of $(x - y)^3$	$+(y-z)^3 + (z-x)^3$ is				
	(1) x + y + z		(2) (x-y)(y-x)(z	(2) $(x-y)(y-x)(z-x)$		
	(3) $(x+y)(y+z)(z-1)$	+x)	(4) <i>xyz</i>			
Q.79.	All the complex root	ts of $z^n = 1$ where $n \ge$	5 is a positive integer	lie on		
	(1) a line	(2) a circle	(3) an ellipse	(4) a parabola		
Q.80.	If a and b are non-ze	ero complex numbers, t	then $ a + b = a + b $ h	olds if and only if		
	(1) a and b are real		(2) a and b are purely imaginary			
(3) a/b is real and positive (4) a/b is real and negative						
Q.81.	The function $f(x) =$	$\frac{x}{1+x}$ (x > 0) is				
	(1) increasing					
	(2) increasing on (0,	1) and decreasing (1,	(∞)			
	(3) decreasing					
	(4) decreasing on (0,	(1, 1) and increasing $(1, 0)$	∞			
Q.82.	The function $f(x) =$	x $(x - real)$ is				
	(1) continuous excep		(2) continuous at all	points		
	(3) continuous excep		(4) continuous nowl	•		
Q.83.	_		function of a re	eal variable satisfying		
	f(x+y) = f(x)f(y)	the $f'(x)$ is equal to				
	(1) f(x)f'(0)	(2) f(x)f(0)	(3) f(x)	(4) a constant		
Q.84.	In the complex plane	e the equivalence classe	es under the relation z	$z \sim \omega \Leftrightarrow \arg z = \arg \omega$ are		
	(1) circles	(2) lines	(3) hyperbolas	(4) parabolas		

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.85.	The range of the	strictly inci	reasing fur	oction $f:$	a, b	$\rightarrow F$	R is
-------	------------------	---------------	-------------	-------------	------	-----------------	------

- (1) $\{f(a), f(b)\}\$ (2) $\{f(b), f(a)\}\$ (3) $|f(b), f(a)|\$ (4) $|f(a), f(b)|\$

Q.86. If z is a complex number with
$$\arg\left(\frac{z-1}{z+1}\right) = \frac{z}{2}$$
, then z lies

(1) one the unit circle

(3) inside the unit circle

(3) at all points ± 1

(4) outside the unit circle

(1) 0

(2) 2

- (3) 3
- (4) 1

Q.88. The value of
$${}^{n}C_{k} / {}^{n-1}C_{k-1}$$
 is

- (1) nk
- (2) n/k
- (3) n + k
- (4) n k

(1) p(A) + p(B)

(2) p(A)p(B)

(3) $p(A \cup B) - p(A \cap B)$

- (4) $p(A \cup B) + p(A \cap B)$
- **Q.90.** If z is a complex number, then the modulus of e^{iz} is
 - (1) 1

- $(2) e^{\text{Re}z}$
- (3) e^{-lmz}

(4) $e^{|z|}$

Q.91. If A is a bounded subset of the positive real numbers and if
$$\frac{1}{A} = \left\{ \frac{1}{x} / x \in A \right\}$$
 then sup $\frac{1}{A}$

is equal to

- $(1) \frac{1}{\sin A}$
- $(2) \sup A$
- (3) inf *A*
- $(4) \frac{1}{\inf A}$

Q.92. The number of real solutions of
$$x^3 + 3x - 4 = 0$$
 is

(1) 0

- (2) 1
- (3)2

(4) 3

Q.93. The pair of planes represented by
$$az^2 + by^2 + cz^2 + 2fyz + 2gzx + 2hxy = 0$$
 is perpendicular if

(1) a - b + c = 0

(2) a+b-c=0

(3) a - b - c = 0

(4) a+b+c=0

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.94. The conjugate of the complex number represented by i^{1} (Where $i^{2} = -1$) are represented

	by					
	(1) i^1	$(2) \pm i$	$(3) \pm 1$	(4) $1+i$ and $1-i$		
Q.95.	The magnitude of the	e resultant of two perp	endicular forces whos	e magnitudes are equal		
	and equal to R is					
	(1) 2R	$(2) \sqrt{2}R$	$(3) \ 2\sqrt{R}$	$(4) \sqrt{2R}$		
Q.96.	The product of $n \ge 4$	consecutive positive	integers divided by $n!$	is		
	(1) 1		(2) a fraction between	0 and 1		
	(3) 2		(4) an integer greater	than 1		
Q.97.	The order of the grou	p of permutations of n	symbols is			
	(1) <i>n</i>	(2) $(n-1)!$	(3) n!	(4) (n+1)!		
Q.98.	The mapping $x \to 0$	e ^{tz} between the gro	up of real numbers	under additive and		
	multiplicative group of	of complex numbers of	modulus 1 is			
	(1) a homomorphism	which is not one-to-on	le			
	(2) an isomorphism					
	(3) a homomorphism	which is not onto				
	(4) not a homomorph	40100				
Q.99.	The least upper bound	d of $\left(1 + \frac{1}{x}\right)^x (x > 1)$ is				
	(1) e	$(2) \frac{1}{\mu}$	(3) 2	$(4)\infty$		
O 100	If $\sin \theta \cos \theta$ and tai	θ are in GP, then $\frac{1-t}{t}$	$\tan^4 \theta$ is			
V.1 00.	in sino, coso una tui	t t	an θ			
	(1) 0	(2) 1	(3) $\tan \theta$	(4) $\sec^2 \theta$		
Q.101.	91. A variable chord is drawn through the origin to circle $x^2 + y^2 - 2ax = 0$. The locus of the					
	centre of the circle wh	nose diameter is the va	riable chord is			
	$(1) x^2 + y^2 + ax = 0$		$(2) x^2 + y^2 + ay = 0$			
	$(3) x^2 + y^2 - ax = 0$		$(4) x^2 + y^2 - ay = 0$			

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q.102. Defining a simple group as a group having no proper normal subgroups we can say that a homomorphism $f: G \to G'$ where G is a simple group and G' is any group is
 - (1) trivial

(2) injective

(3) surjective

(4) either trivial or injective

- **Q.103.** The series $\sum_{n=2}^{\infty} -\frac{1}{n(\log n)^{\mu}}$
 - (1) converges for p > 1 and diverges for $p \le 1$
 - (2) converges for all p
 - (3) converges for $p \le 1$ and diverges for p > 1
 - (4) diverges for all p
- **Q.104.** The curve $z = z(t) = e^{i2\pi t}$ $(0 \le t \le 2)$ describes
 - (1) the lower semi-circle excluding ± 1
- (2) the unit circle twice
- (3) the upper semi-circle including ± 1
- (4) the unit circle
- **Q.105.** The eigenvalues of the matrix $\begin{pmatrix} a & a & a \\ a & a & a \\ a & a & a \end{pmatrix}$ (a real) are
 - (1) a, a, a

(2) a, 1-a, 2-a

(3) 0, 0, 3a

- (4) a, 2a, 3a
- **Q.106.** The functions whose Laplace transform is $\frac{1}{(n-a)^n}(n=1,2,3,\cdots)$ is
 - (1) $\frac{e^{m}}{n!}$

- (3) $\frac{t^{n-1}e^{at}}{(n-1)!}$ (4) $\frac{t^{n+1}e^{at}}{(n+1)!}$
- **Q.107.** If z is a complex number with |z| = 1, then one of the values of arg $\frac{z-1}{z+1}$ is
 - (1) $\pi/3$
- (2) $\pi/6$
- (3) $\pi/2$
- $(4) \pi$
- **Q.108.** The locus of the complex number z such that |z-1|+|z+1|=3 is
 - (1) a circle
- (2) a straight hoe
- (3) an ellipse
- (4) a hyperbola

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

tiziks

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.109. If A and B are mutually exclusive events, then

(1)
$$p(A) \le P(B')$$
 and $p(B) \le P(A')$ (2) $p(A) > P(B')$ and $p(B) < P(A')$

(2)
$$p(A) > P(B')$$
 and $p(B) < P(A')$

(3)
$$p(A) < P(B')$$
 and $p(B) < P(A')$

(3)
$$p(A) < P(B')$$
 and $p(B) < P(A')$ (4) $p(A) = P(B')$ and $p(B) = P(A')$

Q.110. The function f(x) = x|x|(x - real) is

(2) differentiable except at
$$x = 0$$

(3) differentiable except at
$$x = \pm 1$$

Q.111. The function f(x) = 1 for $x \ge 1$ and -1 for x < 1 is such that

(1)
$$f$$
 and $|f|$ are continuous

(2)
$$f$$
 is continuous but $|f|$ is not

(3)
$$|f|$$
 is continuous but f is not

(4) neither
$$f$$
 nor $|f|$ is continuous

Q.112. The function $f(z) = z^2$ is conformal of both kinds

(1) for all
$$z$$

(2) for all
$$z \neq 0$$
 (3) for $|z| < 1$ (4) for $z = \pm 1$

(3) for
$$|z| < 1$$

(4) for
$$z = \pm 1$$

Q.113. The complex number z satisfying $e^z = 0$

(1) is
$$z = 0$$

(3) is
$$z = 1$$

(4) is
$$z = 1$$

Q.114. The shortest distance between the lines $x-2=\frac{V-1}{2}=z+2$ and $x-1=y+4=\frac{z-2}{2}$ is

$$(1) \frac{1}{\sqrt{11}}$$

$$(2) \ \frac{2}{\sqrt{11}}$$

(3)
$$\frac{3}{\sqrt{11}}$$

$$(4) \frac{4}{\sqrt{11}}$$

Q.115. The equation of the sphere whose center is (1, -2, 2) and radius 4 is

(1)
$$x^2 + y^2 + z^2 - 2x + 4y - 4z = 7$$
 (2) $x^2 - y^2 - z^2 - 2x - 4y - 4z = 7$

(2)
$$x^2 - y^2 - z^2 - 2x - 4y - 4z = 7$$

(3)
$$x^2 + y^2 + z^2 - 2x + 4y - 4z = -5$$

(3)
$$x^2 + y^2 + z^2 - 2x + 4y - 4z = -5$$
 (4) $x^2 + y^2 + z^2 + 2x + 4y + 4z = -5$

Q.116. The directional derivative of $\phi(x, y, z) = xy^2 + yz^3$ at the point (1, -2, 1) in the direction

of the vector $\vec{i} - 2\vec{j} + 3\vec{k}$ is

(1)
$$\frac{8}{\sqrt{13}}$$
 (2) $\frac{4}{\sqrt{3}}$

(2)
$$\frac{4}{\sqrt{3}}$$

$$(3) - \frac{8}{\sqrt{11}}$$

$$(4) - \frac{8}{\sqrt{14}}$$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.117.	The magnitude and the	he direction of the gre	atest rate of change of	$f(u = x^2 y z^2)$ at (4, 0, 1)		
	are					
	(1) 4 and <i>x</i> -axis		(2) 4 and <i>z</i> -axis			
	(3) 16 and <i>y</i> -axis		(4) 16 and <i>x</i> -axis			
Q.118.	The vector $\overrightarrow{x} + \overrightarrow{y} + \overrightarrow{j}$	$z\vec{k}$ is				
	(1) irrotational		(2) always \perp to its di	vergence		
	(3) solenoidal		(4) always \perp to its cu	ırl		
Q.119.	Let w be any consta	nt vector and r be the	e position vector \overrightarrow{x} \overrightarrow{i} +	$y \overrightarrow{j} + z \overrightarrow{k}$. If $v = w \times r$,		
	then w is					
	(1) curl v	$(2) \left(\operatorname{curl} v\right)^2$	(3) 2 curl v	(4) $\frac{1}{2}$ curl v		
Q.120.	The value of n , if the	vector $\mathbf{V} = (x \ \vec{i} + y \ \vec{j} + y \ \vec$	$(z \overrightarrow{k})^{n+1}$ is solenoidal in	S		
	(1) -1	(2) -3	(3) 1	(4) 3		
Q.121.	The curve whose tors	ion and the curvature a	are both constant is			
	(1) hyperbola		(2) parabola			
	(3) rectangular hyperl	pola	(4) circular helix			
Q.122.	The area between the	curves $y^2 = 4x$ and x	$c^2 = 4y$ is			
	(1) $\frac{16}{3}$	(2) $\frac{8}{3}$	(3) $\frac{4}{3}$	(4) $\frac{2}{3}$		
Q.123.	Let V be the volume	e enclosed by the clo	sed surface S, n, the	normal to S and r_1 the		
	23. Let V be the volume enclosed by the closed surface S, n, the normal to S and r_1 the position vector. Then $\iint_S \mathbf{r} \cdot \mathbf{n} dS$ is equal to					
	(1) <i>V</i>	(2) 2V	(3) 3 <i>V</i>	(4) 4 V		
Q.124.	The torque about the point (2, -1, -1) is	point (1, -2, 2) of the fo	orce represented by \vec{i}	$+5\vec{k}$ acting through the		
	$(1) \ \overrightarrow{5} \stackrel{\rightarrow}{i} - 8 \stackrel{\rightarrow}{j} - \stackrel{\rightarrow}{k}$	$(2) \ 5 \overrightarrow{i} - \overrightarrow{j} - 8 \overrightarrow{k}$	$(3) \overrightarrow{5i+8j+k}$	$(4) \ 5 \overrightarrow{i} + \overrightarrow{j} + 8 \overrightarrow{k}$		

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- **Q.125.** A real function $f: R \to R$ satisfying $|f(x)-f(y)| \le k(x-y)^2$ for all $x, y \in R, k-a$ constant must be
 - (1) identically zero
 - (2) identically a constant
 - (3) the identity function i.e., $f(x) = x \forall x \in R$
 - (4) e^{x}
- **Q.126.** A particle acted on by the force $2\vec{i} + \vec{j} + 4\vec{k}$ and $\vec{i} + 3\vec{j} 7\vec{k}$ is displaced from the point
 - (1, 1, 4) to (2, 4, 7). Then the total work done by the forces is
 - (1) 4 units
- (2) 6 units
- (3) 8 units
- (4) 10 units
- **Q.127.** The solution of the equation $x^2 \frac{d^2y}{dx^2} + 3x \frac{dy}{dx} + y = x$ is
 - $(1) \frac{1}{x} \left(A + B \log x \right) + \frac{x}{4} + C$
- $(2) e^{x} \left(A + B \log x \right) + \frac{x}{A} + C$
- (3) $x(A + B \log x) + \frac{x}{4} + C$

- $(4) \frac{1}{x}(A+B) + \frac{x}{4} + C$
- Q.128. The acceleration of a particle moving along a straight line after t seconds is $12t^2 + 6t + 2$ m/sec². If the particle starts with the initial velocity of 2 m/sec and covers a distance 12m in 2 sec, then the distance covered in 3 seconds is
 - (1) 103 m
- (2) 123 m
- (3) 83 m
- (4) 113 m
- **Q.129.** If x + y + z = 1 where x, y, z are all positive real numbers, then
 - (1) (1-x)(1-y)(1-z) < 8xyz
- (2) (1-x)(1-y)(1-z) > 8xyz
- (3) (1+x)(1-y)(1-z) > 8xyz
- (4) (1-x)(1+y)(1-z) < 8xyz
- **Q.130.** The solution of the equation $y = 2x \frac{dy}{dx} + y^2 \left(\frac{dy}{dx}\right)^3$ is

- (1) $y = cx + c^3$ (2) $y^2 = 2cx + c^3$ (3) $y = cx^2 + c^3$ (4) $y^2 = cx^2 + c^3$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.131. The value of $\lim_{n\to\infty} \frac{\sin a}{n}$ is

(1) 1

- $(2) \infty$
- (3)0

(4) 2

Q.132. The series $\frac{1}{3}x + \frac{1}{3} \times \frac{2}{5}x^2 + \frac{1}{3} \times \frac{2}{5} \times \frac{3}{7}x^3 + \cdots$

- (1) converges for all x
- (2) converges for x > 2 and diverges for x < 2
- (3) diverges for all x
- (4) converges for x < 2 and diverges for x > 2

Q.133. A ball is released from a balloon 20 sec after it starts ascending with a uniform acceleration of 1.96 m/sec². If the acceleration due to gravity is 9.8 m/sec², then the greatest height above the ground reached by the ball is

- (1) 392 m
- (2) 78.4 m
- (3) 470.4 m
- (4) 313.6 m

Q.134. The series $\sum_{n=1}^{\infty} \frac{x^{n-1}}{(n-1)!}$

- (1) converges absolutely for all x
- (2) converges absolutely for x < 0 only
- (3) does not converges absolutely
- (4) converges absolutely for x > 0 only

Q.135. The solution of the equation $x^2 \frac{d^2 y}{dx^2} + \frac{dy}{dx} = 0$ is

(1) $y = c' + c \int e^{\frac{1}{x}} dx$

(2) $y = c' + c \int e^{-\frac{1}{x}} dx$

 $(3) \quad y = c' + c \int e^x dx$

(4) $y = c' + c \int e^{-x} dx$

Q.136. The solution of the equation $xyp^2 + (3x^2 - 2y^2)p - 6xy = 0$ where $p = \frac{dy}{dx}$ are

(1) y = cx and $y = 3x^2 + c$

- (2) $y^2 = cx$ and $y = 3x^2 + c$
- (3) $y = cx^2$ and $y = -3x^2 + c$
- (4) $y = cx^2$ and $y = 3x^2 + c$

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Q.137. The vector equation of the line 6x-2=3y+1=2z-2 is

$$(1) \overrightarrow{r} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k} + \lambda \left(\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} \right)$$

$$(1) \overrightarrow{r} = \overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k} + \lambda \left(\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} \right)$$

$$(2) \overrightarrow{r} = \overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{k} + \frac{\lambda}{3} \left(\overrightarrow{i} - \overrightarrow{j} + 3\overrightarrow{k} \right)$$

(3)
$$\overrightarrow{r} = \frac{1}{3} \overrightarrow{i} - \frac{1}{3} \overrightarrow{j} + \overrightarrow{k} + \lambda \left(\overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k} \right)$$

$$(3) \overrightarrow{r} = \frac{1}{3} \overrightarrow{i} - \frac{1}{3} \overrightarrow{j} + \overrightarrow{k} + \lambda \left(\overrightarrow{i} + 2 \overrightarrow{j} + 3 \overrightarrow{k} \right)$$

$$(4) \overrightarrow{r} = 2 \overrightarrow{i} + \overrightarrow{j} - 2 \overrightarrow{k} + \lambda \left(6 \overrightarrow{i} + 3 \overrightarrow{j} + 2 \overrightarrow{k} \right)$$

Q.138. The equation of a sphere which passes through (1, 0, 0), (0, 1, 0) and (0, 0, 1) and whose centre lies on the curve 4xy = 1 is

(1)
$$x^2 + y^2 + z^2 - x - y - z = 0$$

(2)
$$x^2 + y^2 + z^2 + x - y - z = 0$$

(3)
$$x^2 + y^2 + z^2 + x + y - z = 0$$

(4)
$$x^2 + y^2 + z^2 + x - y + z = 0$$

Q.139. Let $f, g: R \to R$ be functions. If $g \circ f$ is bijective, then

- (1) both f and g are bijective
- (2) f is bijective but not g

(3) g is bijective but not f

(4) f is injective and g is surjective

Q.140. The angle between the lines whose direction cosines are proportional to 1, 2, 3 and -2, 2, 5 is

(1)
$$\cos^{-1} \frac{7}{\sqrt{462}}$$

(2)
$$\cos^{-1} \frac{17}{\sqrt{462}}$$

(3)
$$\cos^{-1} \frac{17}{\sqrt{461}}$$

(4)
$$\cos^{-1} \frac{7}{\sqrt{461}}$$

Q.141. The co-ordinates of the point equidistant from the points (a, 0, 0), (0, b, 0), (0, 0, c) and

- (0, 0, 0) are
- (1) (a, b, c)

(2) (a, 0, c)

(3) (a/2, b/2, c/2)

(4) (a/2, b, c/2)

Q.142. If $\frac{1+4p}{4}$, $\frac{1-p}{3}$, $\frac{1-2p}{3}$ are probabilities of three mutually exclusive events, then the value of p is

- (1) 1/3
- $(2) \frac{1}{4}$
- (3) 1/5
- (4) 1/2

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498 **Branch office**

Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

- Q.143. A bag contains 12 pairs of socks. 4 socks are picked up at random. The probability that there is at least one pair is
 - (1) 41/161
- (2) 40/160
- (3) 8/25
- (4) 20/161

- **Q.144.** If $f(x) = \int_{0}^{x} \frac{1 \sqrt{t}}{1 + \sqrt{t}} dt$ (0 \le x \le 1), then f(1) is
 - (1) 1

- (2) $1/\sqrt{2}$
- (4) 0

- **Q.145.** The value of $\int \frac{\sin x \cos x}{\sqrt{\sin 2x 1}} dx$ is
 - $(1) -\log[(\sin x + \cos x) + \sqrt{\sin 2x 1}] + c \qquad (2) -\log[(\sin x + \cos x) + \sqrt{\sin 2x}] + c$
 - (3) $-\log[(\sin x \cos x) + \sqrt{\sin 2x 1}] + c$ (4) $-\log[(\sin x \cos x) + \sqrt{\sin 2x}] + c$
- **Q.146.** If $\Delta = \begin{vmatrix} a^2 & bc & ac + c^2 \\ a^2 + ab & b^2 & ac \\ ab & b^2 + bc & c^2 \end{vmatrix}$ then $\sqrt{\frac{\Delta}{4}}$ is
 - (1) (a+b)abc (2) (b+c)abc (3) (c+a)abc
- (4) *abc*
- **Q.147.** In a group G if $a^2 * b^2 = (a * b)^2$ for all $a, b \in G$, then which of the following is true?
 - (1) G is Abelian

(2) G is cyclic

(3) G is infinite

- (4) Every element of G is its own inverse
- **Q.148.** $\int \frac{\log x + \log 2x + \dots + \log nx}{x} dx$ is
 - (1) a polynomial in x

(2) a polynomial in $\log x$

(3) a constant

- (4) a polynomial in x and $\log x$
- **Q.149.** If f(x) is a differentiable function such that $\lim_{x\to\infty} f'(x) = 0$, then $\lim_{x\to\infty} (g)$ where

$$g(x) = f(x+1) - f(x)$$
 is

(1)0

(2) 1

- $(3) \infty$
- (4) Need not exist
- Q.150. If the mean and variance of a binomial variate X are 2 and 1 respectively, then the probability that X takes a value at least one is
 - (1) 2/3
- (2) 4/5
- (3) 7/8
- (4) 15/16

Head office

fiziks, H.No. 40-D, G.F., Jia Sarai, Near IIT, Hauz Khas, New Delhi-16 Phone: 011-26865455/+91-9871145498

Branch office