Q1. A cylinder of radius 1 cm and height 1 cm is broken into three pieces. Which of the following MUST be true?
 (1) At least one piece has volume equal to 1 cm3
 (2) At least two pieces have equal volumes.
 (3) At least one piece has volume less than 1 cm3
 (4) At least one piece has volume greater than 1 cm3

Q2. For real numbers x and y, $x^2 + (y-4)^2 = 0$. Then the value of $x + y$ is
 (1) 0 (2) 2 (3) $\sqrt{2}$ (4) 4

Q3. Every time a ball falls to ground, it bounces back to half the height it fell from. A ball is dropped from a height of 1024 cm. The maximum height from the ground to which it can rise after the tenth bounce is
 (1) 102.4 cm (2) 124 cm (3) 1 cm (4) 2 cm

Q4. A farmer gives 7 full, 7 half-full and 7 empty bottles of honey to his three sons and asks them to share these among themselves such that each of them gets the same amount of honey and the same number of bottles. In how many ways can this be done? (bottles cannot be distinguished otherwise, they are sealed and cannot be broken).
 (1) 0 (2) 1 (3) 2 (4) 3

Q5. A car is moving along a straight track. Its speed is changing with time as shown below. Which of the following statements is correct?
 (1) The speed is never zero.
 (2) The acceleration is zero once on the path.
 (3) The distance covered initially increases and then decreases.
 (4) The car comes back to its initial position once.
Question 6
If \(a + b + c + d + e = 10 \) (all positive numbers), then the maximum value of \(a \times b \times c \times d \times e \) is

- (1) 12
- (2) 32
- (3) 48
- (4) 72

Question 7
How many nine-digit positive integers are there, the sum of squares of whose digits is 2?

- (1) 8
- (2) 9
- (3) 10
- (4) 11

Question 8
A circle of radius 7 units lying in the fourth quadrant touches the \(x \)-axis at \((10, 0)\). The centre of the circle has coordinates

- (1) \((7, 7)\)
- (2) \((-10, 7)\)
- (3) \((10, -7)\)
- (4) \((7, -7)\)

Question 9
One of the four A, B, C and D committed a crime. A said, “I did it”, B said, “I didn’t”, C said, “B did it”, D said, “A did it”. Who is lying?

- (1) A
- (2) B
- (3) C
- (4) D

Question 10
A circle circumscribes identical, close-packed circles of unit diameter as shown in the figure. What is the total area of the shaded portion?

![Diagram](image)

- (1) 2
- (2) \(2\pi\)
- (3) \(1/2\)
- (4) \(\pi/2\)

Question 11
There are 2 hills, A and B, in a region. If hill A is located \(N30^\circ E\) of hill B, what will be the direction of hill B when observed from hill A? (\(N30^\circ E\) means 30° from north towards east).

- (1) S30°W
- (2) S60°W
- (3) S30°E
- (4) S60°E
Q12. What is the next number in the following sequence?
39, 42, 46, 50,…..
(1) 52 (2) 53 (3) 54 (4) 55

Q13. What is the perimeter of the given figure, where adjacent sides are at right angles to each other?

![Figure](image)

(1) 20 cm (2) 18 cm (3) 21 cm (4) cannot be determined

Q14. Three fishermen caught fishes and went to sleep. One of them woke up, took away one fish and \(\frac{1}{3} \) of the remainder as his share, without others’ knowledge. Later, the three of them divided the remainder equally. How many fishes were caught?
(1) 58 (2) 19 (3) 76 (4) 88

Q15. What is the arithmetic mean of \(\frac{1}{1 \times 2}, \frac{1}{2 \times 3}, \frac{1}{3 \times 4}, \frac{1}{4 \times 5}, \ldots, \frac{1}{100 \times 101} \) ?
(1) 0.01 (2) \(\frac{1}{101} \) (3) 0.00111…. (4) \(\frac{1}{49 \times 50} + \frac{1}{50 \times 51} \)

Q16. \((25 \div 5 + 3 - 2 \times 4) + (16 \times 4 - 3) = \)
(1) 61 (2) 22 (3) 41/24 (4) 16

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/+91-9871145498

Branch office
Anand Institute of Mathematics,
28-B/6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16

Website: www.physicsbyfiziks.com
Email: fiziks.physics@gmail.com
Q17. Consider the sequence of ordered sets of natural numbers:

\[\{1\}, \{2, 3\}, \{4, 5, 6\}, \ldots \]

What is the last number in the 10th set?

(1) 10 (2) 19 (3) 55 (4) 67

Q18. A student buys a book from an online shop at 20% discount. His friend buys another copy of the same book in a book fair for Rs. 192 paying 20% less than his friend. What is the full price of the book?

(1) Rs. 275 (2) Rs. 300 (3) Rs. 320 (4) Rs. 392

Q19. 366 players participate in a knock-out tournament. In each round all competing players pair together and play a match, the winner of each match moving to the next round. If at the end of a round there is an odd number of winners, the unpaired one moves to the next round without playing a match. What is the total number of matches played?

(1) 366 (2) 282 (3) 365 (4) 416

Q20. What does the diagram below establish?

Note: The diagram is a circle inside a square.

(1) \(\pi > 3 \) (2) \(\pi \geq 2\sqrt{2} \) (3) \(\pi < 4 \) (4) \(\pi \) is closer to 3 and 4.
PART ‘B’

Q21. A horizontal metal disc rotates about the vertical axis in a uniform magnetic field pointing up as shown in the figure. A circuit is made by connecting one end A of a resistor to the centre of the disc and the other end B to its edge through a sliding contact. The circuit that flows through the resistor is

(1) zero
(2) DC from A to B
(3) DC from B to A
(4) AC

Q22. A spin-\(\frac{1}{2}\) particle is in the state \(\chi = \frac{1}{\sqrt{11}} \begin{pmatrix} 1 + i \\ 3 \end{pmatrix}\) in the eigenbasis of \(S^2\) and \(S_z\). If we measure \(S_z\), the probabilities of getting \(+\frac{\hbar}{2}\) and \(-\frac{\hbar}{2}\), respectively are

(1) \(\frac{1}{2}\) and \(\frac{1}{2}\)
(2) \(\frac{2}{11}\) and \(\frac{9}{11}\)
(3) 0 and 1
(4) \(\frac{1}{11}\) and \(\frac{3}{11}\)

Q23. Which of the following functions cannot be the real part of a complex analytic function of \(z = x + iy\) ?

(1) \(x^2y\)
(2) \(x^2 - y^2\)
(3) \(x^3 - 3xy^2\)
(4) \(3x^3y - y - y^3\)

Q24. The motion of a particle of mass \(m\) in one dimension is described by the Hamiltonian \(H = \frac{p^2}{2m} + \frac{1}{2} m \omega^2 x^2 + \lambda x\). What is the difference between the (quantized) energies of the first two levels? (In the following, \(\langle x \rangle\) is the expectation value of \(x\) in the ground state.)

(1) \(\hbar \omega - \lambda \langle x \rangle\)
(2) \(\hbar \omega + \lambda \langle x \rangle\)
(3) \(\hbar \omega + \frac{\lambda^2}{2m \omega^2}\)
(4) \(\hbar \omega\)
Q25. Let ψ_{nlm} denote the eigenfunctions of a Hamiltonian for a spherically symmetric potential $V(r)$. The expectation value of L_z in the state

$$\psi = \frac{1}{6} [\psi_{200} + \sqrt{5}\psi_{210} + \sqrt{10}\psi_{211} + \sqrt{20}\psi_{211}]$$

is

(1) $-\frac{5}{18} \hbar$
(2) $\frac{5}{6} \hbar$
(3) \hbar
(4) $\frac{5}{18} \hbar$

Q26. Three identical spin-$\frac{1}{2}$ fermions are to be distributed in two non-degenerate distinct energy levels. The number of ways this can be done is

(1) 8
(2) 4
(3) 3
(4) 2

Q27. Let A, B and C be functions of phase space variables (coordinates and momenta of a mechanical system). If $\{,\}$ represents the Poisson bracket, the value of $\{A, \{B, C\}\} - \{\{A, B\}, C\}$ is given by

(1) 0
(2) $\{B, \{C, A\}\}$
(3) $\{A, \{C, B\}\}$
(4) $\{\{C, A\}, B\}$

Q28. If A, B and C are non-zero Hermitian operators, which of the following relations must be false?

(1) $[A, B] = C$
(2) $AB + BA = C$
(3) $ABA = C$
(4) $A + B = C$

Q29. The expression

$$\left(\frac{\partial^2}{\partial x_1^2} + \frac{\partial^2}{\partial x_2^2} + \frac{\partial^2}{\partial x_3^2} + \frac{\partial^2}{\partial x_4^2}\right) \left(\frac{1}{x_1^2 + x_2^2 + x_3^2 + x_4^2}\right)$$

is proportional to

(1) $\delta(x_1 + x_2 + x_3 + x_4)$
(2) $\delta(x_1)\delta(x_2)\delta(x_3)\delta(x_4)$
(3) $(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-3/2}$
(4) $(x_1^2 + x_2^2 + x_3^2 + x_4^2)^{-2}$
Q30. Given that the integral \(\int_0^\infty \frac{dx}{y^2 + x^2} = \frac{\pi}{2y} \), the value of \(\int_0^\infty \frac{dx}{(y^2 + x^2)^\frac{3}{2}} \) is

(1) \(\frac{\pi}{y^3} \)
(2) \(\frac{\pi}{4y^3} \)
(3) \(\frac{\pi}{8y^3} \)
(4) \(\frac{\pi}{2y^3} \)

Q31. The force between two long and parallel wires carrying currents \(I_1 \) and \(I_2 \) and separated by a distance \(D \) is proportional to

(1) \(I_1 I_2 / D \)
(2) \((I_1 + I_2) / D \)
(3) \((I_1 I_2 / D)^2 \)
(4) \(I_1 I_2 / D^2 \)

Q32. A loaded dice has the probabilities \(\frac{1}{21}, \frac{2}{21}, \frac{3}{21}, \frac{4}{21}, \frac{5}{21}, \frac{6}{21} \) of turning up 1, 2, 3, 4, 5 and 6, respectively. If it is thrown twice, what is the probability that the sum of the numbers that turn up is even?

(1) \(\frac{441}{144} \)
(2) \(\frac{225}{441} \)
(3) \(\frac{221}{441} \)
(4) \(\frac{220}{441} \)

Q33. A particle moves in a potential \(V = x^2 + y^2 + \frac{z^2}{2} \). Which component(s) of the angular momentum is/are constant(s) of motion?

(1) none
(2) \(L_x, L_y \) and \(L_z \)
(3) only \(L_x \) and \(L_y \)
(4) only \(L_z \)

Q34. The Hamiltonian of a relativistic particle of rest mass \(m \) and momentum \(p \) is given by \(H = \sqrt{p^2 + m^2} + V(x) \), in units in which the speed of light \(c = 1 \). The corresponding Lagrangian is

(1) \(L = m\sqrt{1 + \dot{x}^2} - V(x) \)
(2) \(L = -m\sqrt{1 - \dot{x}^2} - V(x) \)
(3) \(L = \sqrt{1 + m\dot{x}^2} - V(x) \)
(4) \(L = \frac{1}{2} m\dot{x}^2 - V(x) \)
Q35. A ring of mass m and radius R rolls (without slipping) down an inclined plane starting from rest. If the centre of the ring is initially at a height h, the angular velocity when the ring reaches the base is

\[\sqrt{\frac{g}{h-R}} \tan \theta \]
\[\sqrt{\frac{g}{h-R}} \]
\[\sqrt{\frac{g(h-R)}{R^2}} \]
\[\sqrt{2g(h-R)} \]

Q36. Consider the op-amp circuit shown in the figure.

If the input is a sinusoidal wave $V_i = 5 \sin(1000\pi t)$, then the amplitude of the output V_o is

\[\frac{5}{2} \]
\[5 \]
\[\frac{5\sqrt{2}}{2} \]
\[5\sqrt{2} \]

Q37. If one of the inputs of a J-K flip flop is high and the other is low, then the outputs Q and \bar{Q}

(1) oscillate between low and high in race around condition
(2) toggle and the circuit acts like a T flip flop
(3) are opposite to the inputs
(4) follow the inputs and the circuit acts like an $R-S$ flip flop
Q38. Two monochromatic sources, L_1 and L_2 emit light at 600 and 700 nm, respectively. If their frequency bandwidths are 10^{-1} and 10^{-3} GHz, respectively, then the ratio of linewidth of L_1 to L_2 is approximately

(1) $100:1$
(2) $1:85$
(3) $75:1$
(4) $1:75$

Q39. Let (V, \vec{A}) and (V', \vec{A}') denote two sets of scalar and vector potentials, and ψ a scalar function. Which of the following transformations leave the electric and magnetic fields (and hence Maxwell’s equations) unchanged?

(1) $\vec{A}' = \vec{A} + \nabla \psi$ and $V' = V - \frac{\partial \psi}{\partial t}$
(2) $\vec{A}' = \vec{A} - \nabla \psi$ and $V' = V + 2 \frac{\partial \psi}{\partial t}$
(3) $\vec{A}' = \vec{A} + \nabla \psi$ and $V' = V + \frac{\partial \psi}{\partial t}$
(4) $\vec{A}' = \vec{A} - \nabla \psi$ and $V' = V - \frac{\partial \psi}{\partial t}$

Q40. Consider the melting transition of ice into water at constant pressure. Which of the following thermodynamic quantities does not exhibit a discontinuous change across the phase transition?

(1) Internal energy
(2) Helmholtz free energy
(3) Gibbs free energy
(4) entropy

Q41. Two different thermodynamic systems are described by the following equations of state:

$$\frac{1}{T^{(1)}} = \frac{3RN^{(1)}}{2U^{(1)}} \quad \text{and} \quad \frac{1}{T^{(2)}} = \frac{5RN^{(2)}}{2U^{(2)}}$$

where $T^{(1,2)}$, $N^{(1,2)}$ and $U^{(1,2)}$ are respectively, the temperatures, the mole numbers and the internal energies of the two systems, and R is the gas constant. Let U_{tot} denote the total energy when these two systems are put in contact and attain thermal equilibrium.

The ratio $\frac{U^{(1)}}{U_{tot}}$ is

(1) $\frac{5N^{(2)}}{3N^{(1)} + 5N^{(2)}}$
(2) $\frac{3N^{(1)}}{3N^{(1)} + 5N^{(2)}}$
(3) $\frac{N^{(1)}}{N^{(1)} + N^{(2)}}$
(4) $\frac{N^{(2)}}{N^{(1)} + N^{(2)}}$
Q42. The speed v of the molecules of mass m of an ideal gas obeys Maxwell’s velocity distribution law at an equilibrium temperature T. Let (v_x, v_y, v_z) denote the components of the velocity and k_B the Boltzmann constant. The average value of $(\alpha v_x - \beta z)^2$, where α and β are constants, is

\begin{align*}
(1) \quad & (\alpha^2 - \beta^2)k_B T/m \\
(2) \quad & (\alpha^2 + \beta^2)k_B T/m \\
(3) \quad & (\alpha + \beta)^2k_B T/m \\
(4) \quad & (\alpha - \beta)^2k_B T/m
\end{align*}

Q43. The entropy S of a thermodynamic system as a function of energy E is given by the following graph

The temperatures of the phases A, B and C, denoted by T_A, T_B and T_C, respectively, satisfy the following inequalities:

\begin{align*}
(1) \quad & T_C > T_B > T_A \\
(2) \quad & T_A > T_C > T_B \\
(3) \quad & T_B > T_C > T_A \\
(4) \quad & T_B > T_A > T_C
\end{align*}

Q44. The physical phenomenon that cannot be used for memory storage applications is

\begin{enumerate}
\item large variation in magnetoresistance as a function of applied magnetic field
\item variation in magnetization of a ferromagnet as a function of applied magnetic field
\item variation in polarization of a ferroelectric as a function of applied electric field
\item variation in resistance of a metal as a function of applied electric field
\end{enumerate}
Q45. Two identical Zener diodes are placed back to back in series and are connected to a variable DC power supply. The best representation of the I-V characteristics of the circuit is

(1) \[I \sim V \]

(2) \[I \sim V \]

(3) \[I \sim V \]

(4) \[I \sim V \]

Q46. A pendulum consists of a ring of mass \(M \) and radius \(R \) suspended by a massless rigid rod of length \(l \) attached to its rim. When the pendulum oscillates in the plane of the ring, the time period of oscillation is

(1) \[2\pi \sqrt{\frac{l + R}{g}} \]

(2) \[\frac{2\pi}{\sqrt{g}} \left(l^2 + R^2 \right)^{1/4} \]

(3) \[2\pi \sqrt{\frac{2R^2 + 2Rl + l^2}{g(R + l)}} \]

(4) \[\frac{2\pi}{\sqrt{g}} \left(2R^2 + 2Rl + l^2 \right)^{1/4} \]

Q47. Spherical particles of a given material of density \(\rho \) are released from rest inside a liquid medium of lower density. The viscous drag force may be approximated by the Stoke’s law, i.e., \(F_d = 6\pi \eta R v \), where \(\eta \) is the viscosity of the medium, \(R \) the radius of a particle and \(v \) its instantaneous velocity. If \(\tau(m) \) is the time taken by a particle of mass \(m \) to reach half its terminal velocity, then the ratio \(\tau(8m)/\tau(m) \) is

(1) 8

(2) 1/8

(3) 4

(4) 1/4

Head office
fiziks, H.No. 23, G.F, Jia Sarai,
Near IIT, Hauz Khas, New Delhi-16
Phone: 011-26865455/+91-9871145498
Website: www.physicsbyfiziks.com
Email: fiziks.physics@gmail.com

Branch office
Anand Institute of Mathematics,
28-B/6, Jia Sarai, Near IIT
Hauz Khas, New Delhi-16
Q48. A system of N classical non-interacting particles, each of mass m, is at a temperature T and is confined by the external potential $V(r) = \frac{1}{2}Ar^2$ (where A is a constant) in three dimensions. The internal energy of the system is

$$E = (1) \frac{3Nk_B T}{2} \quad (2) \frac{3}{2} Nk_B T \quad (3) N(2mA)^{3/2} k_B T \quad (4) N\sqrt{\frac{A}{m}} \ln \left(\frac{k_B T}{m} \right)$$

Q49. Consider a particle of mass m attached to two identical springs each of length l and spring constant k (see the figure below). The equilibrium configuration is the one where the springs are unstretched. There are no other external forces on the system. If the particle is given a small displacement along the x-axis, which of the following describes the equation of motion for small oscillations?

$$(1) m\ddot{x} + \frac{kx^3}{l^2} = 0 \quad (2) m\ddot{x} + kx = 0 \quad (3) m\ddot{x} + 2kx = 0 \quad (4) m\ddot{x} + \frac{kx^2}{l} = 0$$

Q50. If $\psi(x) = A \exp(-x^4)$ is the eigenfunction of a one dimensional Hamiltonian with eigenvalue $E = 0$, the potential $V(x)$ (in units where $\hbar = 2m = 1$) is

$$(1) 12x^2 \quad (2) 16x^6 \quad (3) 16x^6 + 12x^2 \quad (4) 16x^6 - 12x^2$$

Q51. The electric field of an electromagnetic wave is given by

$$\mathbf{E} = E_0 \cos[\pi(0.3x + 0.4y - 1000t)]\mathbf{k}.$$

The associated magnetic field \mathbf{B} is

$$(1) 10^{-3} E_0 \cos[\pi(0.3x + 0.4y - 1000t)]\mathbf{k}$$

$$(2) 10^{-4} E_0 \cos[\pi(0.3x + 0.4y - 1000t)](4\mathbf{i} - 3\mathbf{j})$$

$$(3) E_0 \cos[\pi(0.3x + 0.4y - 1000t)](0.3\mathbf{i} + 0.4\mathbf{j})$$

$$(4) 10^2 E_0 \cos[\pi(0.3x + 0.4y - 1000t)](3\mathbf{i} + 4\mathbf{j})$$
Q52. The energy of an electron in a band as a function of its wave vector k is given by $E(k) = E_0 - B(\cos k_x a + \cos k_y a + \cos k_z a)$, where E_0, B, and a are constants. The effective mass of the electron near the bottom of the band is

(1) $\frac{2\hbar^2}{3Ba^2}$
(2) $\frac{\hbar^2}{3Ba^2}$
(3) $\frac{\hbar^2}{2Ba^2}$
(4) $\frac{\hbar^2}{Ba^2}$

Q53. A DC voltage V is applied across a Josephson junction between two superconductors with a phase difference ϕ_0. If I_0 and k are constants that depend on the properties of the junction, the current flowing through it has the form

(1) $I_0 \sin\left(\frac{2eVt}{h} + \phi_0\right)$
(2) $kV \sin\left(\frac{2eVt}{h} + \phi_0\right)$
(3) $kV \sin\phi_0$
(4) $I_0 \sin\phi_0 + kV$

Q54. Consider the following ratios of the partial decay widths

$R_1 = \frac{\Gamma(\rho^+ \to \pi^+ + \pi^0)}{\Gamma(\rho^- \to \pi^- + \pi^0)}$ and $R_2 = \frac{\Gamma(\Delta^+ \to \pi^+ + p)}{\Gamma(\Delta^- \to \pi^- + n)}$

If the effects of electromagnetic and weak interactions are neglected, then R_1 and R_2 are respectively,

(1) 1 and $\sqrt{2}$
(2) 1 and 2
(3) 2 and 1
(4) 1 and 1

Q55. The intrinsic electric dipole moment of a nucleus $\frac{A}{Z}X$

(1) increases with Z, but independent of A
(2) decreases with Z, but independent of A
(3) is always zero
(4) increases with Z and A
Q56. According to the shell model, the total angular momentum (in units of \hbar) and the parity of the ground state of the ^7Li nucleus is

(1) $\frac{3}{2}$ with negative parity
(2) $\frac{3}{2}$ with positive parity
(3) $\frac{1}{2}$ with positive parity
(4) $\frac{7}{2}$ with negative parity

Q57. A point charge q is placed symmetrically at a distance d from two perpendicularly placed grounded conducting infinite plates as shown in the figure. The net force on the charge (in units of $1/4\pi\varepsilon_0$) is

(1) $\frac{q^2}{8d^2}(2\sqrt{2} - 1)$ away from the corner
(2) $\frac{q^2}{8d^2}(2\sqrt{2} - 1)$ towards the corner
(3) $\frac{q^2}{2\sqrt{2}d^2}$ towards the corner
(4) $\frac{3q^2}{8d^2}$ away from the corner

Q58. Let four point charges q, $-q/2$, q and $-q/2$ be placed at the vertices of a square of side a. Let another point charge $-q$ be placed at the centre of the square (see the figure).

Let $V(r)$ be the electrostatic potential at a point P at a distance $r >> a$ from the centre of the square. Then $V(2r)/V(r)$ is

(1) 1
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{8}$
Q59. Let A and B be two vectors in three-dimensional Euclidean space. Under rotation, the tensor product $T_{ij} = A_i B_j$

(1) reduces to a direct sum of three 3-dimensional representations
(2) is an irreducible 9-dimensional representation
(3) reduces to a direct sum of a 1-dimensional, a 3-dimensional and a 5-dimensional irreducible representations
(4) reduces to a direct sum of a 1-dimensional and an 8-dimensional irreducible representations

Q60. The Fourier transform of the derivative of the Dirac δ - function, namely $\delta'(x)$, is proportional to

(1) 0 (2) 1 (3) $\sin k$ (4) ik

Q61. A particle is in the ground state of an infinite square well potential given by,

$$V(x) = \begin{cases} 0 & \text{for } -a \leq x \leq a \\ \infty & \text{otherwise} \end{cases}$$

The probability to find the particle in the interval between $-\frac{a}{2}$ and $\frac{a}{2}$ is

(1) $\frac{1}{2}$ (2) $\frac{1}{2} + \frac{1}{\pi}$ (3) $\frac{1}{2} - \frac{1}{\pi}$ (4) $\frac{1}{\pi}$

Q62. The expectation value of the x - component of the orbital angular momentum L_x in the state $\psi = \frac{1}{5} [3\psi_{2,1,-1} + \sqrt{5}\psi_{2,1,0} - \sqrt{11}\psi_{2,1,1}]$

(where ψ_{nml} are the eigenfunctions in usual notation), is

(1) $-\frac{\hbar \sqrt{10}}{25}(\sqrt{11} - 3)$ (2) 0 (3) $\frac{\hbar \sqrt{10}}{25}(\sqrt{11} + 3)$ (4) $\hbar \sqrt{2}$
Q63. A particle is prepared in a simultaneous eigenstate of L^2 and L_z. If $l(\ell + 1)\hbar^2$ and $m\hbar$ are respectively the eigenvalues of L^2 and L_z, then the expectation value $\langle L_z^2 \rangle$ of the particle in this state satisfies

1. $\langle L_z^2 \rangle = 0$
2. $0 \leq \langle L_z^2 \rangle \leq \ell^2\hbar^2$
3. $0 \leq \langle L_z^2 \rangle \leq \frac{\ell(\ell + 1)\hbar^2}{3}$
4. $\frac{\ell\hbar^2}{2} \leq \langle L_z^2 \rangle \leq \frac{\ell(\ell + 1)\hbar^2}{3}$

Q64. If the electrostatic potential $V(r, \theta, \phi)$ in a charge free region has the form $V(r, \theta, \phi) = f(r) \cos \theta$, then the functional form of $f(r)$ (in the following a and b are constants) is:

1. $ar^2 + \frac{b}{r}$
2. $ar + \frac{b}{r^2}$
3. $ar + \frac{b}{r}$
4. $a \ln \left(\frac{r}{b} \right)$

Q65. If $\vec{A} = \hat{i}_{yz} + \hat{j}_{xz} + \hat{k}_{xy}$, then the integral $\oint_C \vec{A} \cdot d\vec{l}$ (where C is along the perimeter of a rectangular area bounded by $x = 0, x = a$ and $y = 0, y = b$) is

1. $\frac{1}{2}(a^3 + b^3)$
2. $\pi(ab^2 + a^2b)$
3. $\pi(a^3 + b^3)$
4. 0

Q66. Consider an $n \times n (n > 1)$ matrix A, in which A_{ij} is the product of the indices i and j (namely $A_{ij} = ij$). The matrix A

1. has one degenerate eigenvalue with degeneracy $(n-1)$
2. has two degenerate eigenvalues with degeneracies 2 and $(n-2)$
3. has one degenerate eigenvalue with degeneracy n
4. does not have any degenerate eigenvalue
Q67. A child makes a random walk on a square lattice of constant a taking a step in the north, east, south or west directions with probabilities 0.255, 0.255, 0.245 and 0.245, respectively. After a large number of steps, N, the expected position of the child with respect to the starting point is at a distance

1. $\sqrt{2} \times 10^{-2} Na$ in the north-east direction
2. $\sqrt{2N} \times 10^{-2} a$ in the north-east direction
3. $2\sqrt{2} \times 10^{-2} Na$ in the south-west direction
4. 0

Q68. A Carnot cycle operates as a heat engine between two bodies of equal heat capacity until their temperatures become equal. If the initial temperatures of the bodies are T_1 and T_2, respectively and $T_1 > T_2$ then their common final temperature is

1. $\frac{T_1^2}{T_2}$
2. $\frac{T_2^2}{T_1}$
3. $\sqrt{T_1 T_2}$
4. $\frac{1}{2}(T_1 + T_2)$

Q69. Three sets of data A, B and C from an experiment, represented by ×, □ and O, are plotted on a log-log scale. Each of these are fitted with straight lines as shown in the figure.

![Graph](image)

The functional dependence $y(x)$ for the sets A, B and C are respectively

1. \sqrt{x}, x and x^2
2. $-\frac{x}{2}$, x and $2x$
3. $\frac{1}{x^2}$, x and x^2
4. $\frac{1}{\sqrt{x}}$, x and x^2
Q70. A sample of Si has electron and hole mobilities of 0.13 and 0.05 m2/V-s respectively at 300 K. It is doped with P and Al with doping densities of 1.5×10^{21} m$^{-3}$ and 2.5×10^{21} m$^{-3}$ respectively. The conductivity of the doped Si sample at 300 K is

(1) $8 \ \Omega^{-1} m^{-1}$
(2) $32 \ \Omega^{-1} m^{-1}$
(3) $20.8 \ \Omega^{-1} m^{-1}$
(4) $83.2 \ \Omega^{-1} m^{-1}$

Q71. A 4-variable switching function is given by $f = \sum (5, 7, 8, 10, 13, 15) + d(0, 1, 2)$, where d is the do-not-care-condition. The minimized form of f in sum of products (SOP) form is

(1) $\overline{AC} + \overline{BD}$
(2) $\overline{AB} + \overline{CD}$
(3) $AD + BC$
(4) $\overline{BD} + BD$

Q72. A perturbation $V_{pert} = aL^2$ is added to the Hydrogen atom potential. The shift in the energy level of the $2P$ state, when the effects of spin are neglected up to second order in a, is

(1) 0
(2) $2ah^2 + a^2h^4$
(3) $2ah^2$
(4) $ah^2 + \frac{3}{2}a^2h^4$

Q73. A gas laser cavity has been designed to operate at $\lambda = 0.5 \mu m$ with a cavity length of 1 m. With this set-up, the frequency is found to be larger than the desired frequency by 100 Hz. The change in the effective length of the cavity required to retune the laser is

(1) -0.334×10^{-12} m
(2) 0.334×10^{-12} m
(3) 0.167×10^{-12} m
(4) -0.167×10^{-12} m
Q74. The spectroscopic symbol for the ground state of 13Al is $^2P_{1/2}$. Under the action of a strong magnetic field (when $L-S$ coupling can be neglected) the ground state energy level will split into

- (1) 3 levels
- (2) 4 levels
- (3) 5 levels
- (4) 6 levels

Q75. A uniform linear monoatomic chain is modeled by a spring-mass system of masses m separated by nearest neighbour distance a and spring constant $m \omega_0^2$. The dispersion relation for this system is

- (1) $\omega(k) = 2\omega_0 \left(1 - \cos \left(\frac{ka}{2}\right)\right)$
- (2) $\omega(k) = 2\omega_0 \sin^2 \left(\frac{ka}{2}\right)$
- (3) $\omega(k) = 2\omega_0 \sin \left(\frac{ka}{2}\right)$
- (4) $\omega(k) = 2\omega_0 \tan \left(\frac{ka}{2}\right)$