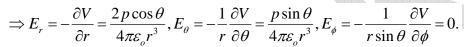

(g) Electric Dipoles


A electric dipole consists of two equal and opposite charges $(\pm q)$ separated by a distance d. Its dipole moment is $\vec{p} = q\vec{d}$ and its direction is from -q to +q charge.

The Electric Potential and Field of a Dipole

If we choose coordinates so that \overrightarrow{p} (dipole moment) lies at the origin and points in the z-direction, then potential at (r,θ) is:

$$V_{dip}(r,\theta) = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2} = \frac{1}{4\pi\varepsilon_0 r^2} \frac{\vec{p}.\hat{r}}{r^2}.$$

\(\therefore\) \(\vec{r}.\hat{r} = (p\hat{z}).\hat{r} = p\cos\theta\)

The electric field of a dipole:

$$\vec{E}_{dip}(r,\theta) = \frac{p}{4\pi\varepsilon_0 r^3} \left(2\cos\theta \,\hat{r} + \sin\theta \hat{\theta} \right).$$

We can express $\vec{p} = (\vec{p} \cdot \hat{r})\hat{r} + (\vec{p} \cdot \hat{\theta})\hat{\theta} = p\cos\theta\hat{r} - p\sin\theta\hat{\theta}$.

Thus,
$$3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p} = 2p\cos\theta \hat{r} + p\sin\theta\hat{\theta}$$

$$\Rightarrow \vec{E}_{dip}(r,\theta) = \frac{1}{4\pi\varepsilon_0 r^3} \left[3(\vec{p} \cdot \hat{r})\hat{r} - \vec{p} \right]$$

Note:

- (a) When a dipole is placed in a uniform electric field (\vec{E}) , net force on the dipole is zero and it experiences a torque $\vec{\tau} = \vec{p} \times \vec{E}$ where $\vec{p} = q\vec{d}$.
- (b) In non-uniform field, dipoles have net force $\vec{F} = (\vec{p} \cdot \vec{\nabla})\vec{E}$ and torque $\vec{\tau} = \vec{p} \times \vec{E}$.
- (c) Energy of an ideal dipole \vec{p} in an electric field \vec{E} is $U = -\vec{p} \cdot \vec{E}$.
- (d) Interaction energy of two dipoles separated by a distance \vec{r} is

$$U = \frac{1}{4\pi\varepsilon_0 r^3} \left[\vec{p}_1 \cdot \vec{p}_2 - 3(\vec{p}_1 \cdot \hat{r})(\vec{p}_2 \cdot \hat{r}) \right]$$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com