fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

1(a). Basic Nuclear Properties-Introduction

An ordinary hydrogen atom has as its nucleus a single proton, whose charge is +e and whose mass is 1836 times that of the electron. All other elements have nuclei that contain neutrons as well as protons. As its name suggests, the neutron is uncharged; its mass is slightly greater than that of the proton. Neutrons and protons are jointly called **nucleons**.

The **atomic number** of an element is the number of protons in each of its nuclei, which is the same as the number of electrons in a neutral atom of the element. Thus atomic number of hydrogen is 1, of helium 2, of lithium 3, and of uranium 92. All nuclei of a given element do not necessarily have equal numbers of neutrons. For instance, although over 99.9 percent of hydrogen nuclei are just single protons, a few also contain a neutron, and a very few two neutrons, along with the protons. The varieties of an element that differ in the numbers of neutrons their nuclei contain are called **isotopes**.

Figure: The isotope of hydrogen

The conventional symbols for nuclear species, or nuclides, follow the pattern $^{^{A}}_{^{Z}}X$, where

X = Chemical symbol of the element

Z = Atomic number of the element = Number of protons in the nucleus

A = Mass number of the nuclide = Number of nucleons in the nucleus

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Nuclear Terminology

Isotopes

If two nuclei have same atomic number Z (proton), then they are called as isotopes.

Example:
$${}_{6}^{13}$$
C & ${}_{6}^{14}$ C, ${}_{8}^{16}$ O & ${}_{8}^{17}$ O and ${}_{1}^{1}$ H, ${}_{1}^{2}$ H, ${}_{1}^{3}$ H

Isotones

If two nuclei have same neutron number N (proton), then they are called as isotones.

Example: ¹³₆C and ¹⁴₇N

• Isobars

If two nuclei have same mass number A, then they are called as isobars.

Example: 14 C and 7 N

• Mirror nuclei

Nuclei with same mass number A but with proton and neutron number interchanged and their difference is ± 1 .

Example:
$${}^{11}_6\text{C}$$
 & ${}^{11}_5\text{B}$ and ${}^{13}_7\text{N}$ & ${}^{13}_6\text{C}$

Atomic masses: Atomic masses refer to the masses of neutral atoms, not of bare nuclei. Thus an atomic mass always includes the masses of Z electrons. Atomic masses are expressed in **mass units** (u), which are so defined that the mass of a $_6^{12}$ C atom is exactly 12u. The value of mass unit is $1u = 1.66054 \times 10^{-27} kg \approx 931.4 \, MeV$

Some rest masses in various units are:

Particle	Mass(kg)	Mass(u)	$Mass(MeV/c^2)$
Proton	1.6726×10^{-27}	1.007276	938.28
Neutron	1.6750×10^{-27}	1.008665	939.57
Electron	9.1095×10^{-31}	5.486×10^{-4}	0.511
₁ H ¹	1.6736×10^{-27}	1.007825	938.79

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com