1(b). Size and Density

Majority of atomic nuclei have spherical shape and only very few show departure from spherical symmetry. For spherically symmetrical nuclei, nuclear radius is given by

$$
R=R_{0} A^{1 / 3}
$$

where A is the mass number and $R_{0}=(1.2 \pm 0.1) \times 10^{-15} \mathrm{~m} \approx 1.2 \mathrm{fm}$.
R varies slightly from one nucleus to another but is roughly constant for $A>20$.
The radius of ${ }_{6}^{12} \mathrm{C}$ nucleus is

$$
R=(1.2)(12)^{1 / 3} \approx 2.7 \mathrm{fm}
$$

Example: The radius of $G e$ nucleus is measured to be twice the radius of ${ }_{4}^{9} \mathrm{Be}$. How many nucleons are there in $G e$ nucleus?

Solution: $R=R_{o}(A)^{1 / 3} \Rightarrow R_{G e}=2 R_{B e} \Rightarrow R_{o}(A)^{1 / 3}=2 R_{o}(9)^{1 / 3} \Rightarrow A=72$

Nuclear Density

Assuming spherical symmetry, volume of nucleus is given by

$$
\mathrm{V}=\frac{4}{3} \pi \mathrm{R}^{3}=\frac{4}{3} \pi \mathrm{R}_{0}^{3} \mathrm{~A}
$$

Mass of one proton $=1.67 \times 10^{-27} \mathrm{~kg}$, Nuclear Mass $=\mathrm{A} \times 1.67 \times 10^{-27} \mathrm{~kg}$.
Nuclear density $=\frac{\mathrm{A} \times 1.67 \times 10^{-27}}{\frac{4}{3} \pi \mathrm{R}_{0}^{3} \times \mathrm{A}} \approx 10^{17} \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{aligned}
\text { Nuclear Particle Density } & =\frac{\text { Nuclear Mass Density }}{\text { Nuclear Mass }}=\frac{10^{17} \mathrm{Kg} / \mathrm{m}^{3}}{1.67 \times 10^{-27} \mathrm{Kg} / \text { Nucleon }} \\
& =10^{44} \text { Nucleons } / \mathrm{m}^{3}
\end{aligned}
$$

