fiziks

1

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

1(b). Size and Density

Majority of atomic nuclei have spherical shape and only very few show departure from spherical symmetry. For spherically symmetrical nuclei, nuclear radius is given by

$$R = R_0 A^{1/3}$$

where A is the mass number and $R_0 = (1.2 \pm 0.1) \times 10^{-15} m \approx 1.2 \text{ fm}$.

R varies slightly from one nucleus to another but is roughly constant for A > 20.

The radius of ${}^{12}_{6}$ C nucleus is

$$R = (1.2)(12)^{1/3} \approx 2.7 \, fm$$

Example: The radius of Ge nucleus is measured to be twice the radius of ${}_{4}^{9}Be$. How many nucleons are there in Ge nucleus?

Solution:
$$R = R_o(A)^{1/3} \Rightarrow R_{Ge} = 2R_{Be} \Rightarrow R_o(A)^{1/3} = 2R_o(9)^{1/3} \Rightarrow A = 72$$

Nuclear Density

Assuming spherical symmetry, volume of nucleus is given by

$$V = \frac{4}{3}\pi R^3 = \frac{4}{3}\pi R_0^3 A.$$

Mass of one proton = 1.67×10^{-27} kg, Nuclear Mass = $A \times 1.67 \times 10^{-27}$ kg.

Nuclear density =
$$\frac{A \times 1.67 \times 10^{-27}}{\frac{4}{3} \pi R_0^3 \times A} \approx 10^{17} \text{ kg} / \text{m}^3$$

Nuclear Particle Density =
$$\frac{\text{Nuclear Mass Density}}{\text{Nuclear Mass}}$$
 = $\frac{10^{17} \text{ Kg/m}^3}{1.67 \times 10^{-27} \text{ Kg/Nucleon}}$
= $10^{44} \text{ Nucleons/m}^3$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com