

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

M.Sc. Physics 2017

Q1. If N atoms of a gas is mixed with N atoms of the same gas, the entropy of mixing			entropy of mixing of the
_		<i>C</i> ,	
(a) $2kN \ln 2$	(b) <i>kN</i> ln 2	(c) zero	(d) ln 2
Where k is Baltzama	ann constant?		
The heat involved in	going reversibly bety	veen two states can be	e made integrable when
multiplied with an in	tegrating factor		
$(a)\frac{1}{V}$	(b) <i>T</i>	(c) $\frac{1}{T}$	(d) S
In an isothermal exp	ansion of 10 gm of ni	trogen, its volume bec	comes 4 times of initial
volume. The change	in entropy of nitrogen	if molecular weight o	of nitrogen = 28 and for
1 gm – mole gas, gas	constant $R = 8.3 J/mo$	le-K, is	
(a) 4.1 <i>joule / K</i>	(b) 41 <i>joule K</i>	(c) 4.1erg/K	(d) 4.1 <i>cal</i> / <i>K</i>
The function which	remains constant if	the thermodynamic	process is carried out
isobarically and isoth	ermally is called		
(a) Internal energy		(b) Gibbs' function	
(c) Helmholtz function	on	(d) Enhalpy	
Which of the followi	ng gives volume, V?		
(a) $\left(\frac{\partial G}{\partial P}\right)_T$	(b) $\left(\frac{\partial U}{\partial V}\right)_{x}$	(c) $-\left(\frac{\partial G}{\partial T}\right)_{P}$	$(d) \left(\frac{\partial U}{\partial S} \right)_T$
Where the symbols h	ave their usual meanin	gs.	•
Fermi level represent	s the energy level with	probability of its occu	pation of
(a) 0%	(b) 25%	(c) 50%	(d)100%
The steady state cond	litions in diffusion are	governed by	
(a) Fick's second law	,	(b) Fick's first law	
(c) Both (1) and (2)		(d) Maxwell-Boltzma	ann's law
The electronic polari	zability, α_c of a mona	atomic gas atom, if r	is the radius of orbit of
electron, is			
(a) $4\pi\varepsilon_0$	(b) $4\pi\varepsilon_0 r$	(c) $4\pi\varepsilon_0 r^3$	(d) $4\pi\varepsilon_0 r^2$
	gases in thermodyname (a) $2kN \ln 2$ Where k is Baltzama. The heat involved in multiplied with an interpretation (a) $\frac{1}{V}$ In an isothermal expression volume. The change $1 gm - mole$ gas, gas (a) $4.1 joule / K$ The function which isobarically and isoth (a) Internal energy (c) Helmholtz function which of the following $\frac{\partial G}{\partial P}_T$ Where the symbols have the symbol	gases in thermodynamics is (a) $2kN \ln 2$ (b) $kN \ln 2$ Where k is Baltzamann constant? The heat involved in going reversibly between ultiplied with an integrating factor (a) $\frac{1}{V}$ (b) T In an isothermal expansion of $10 \ gm$ of nivolume. The change in entropy of nitrogen $1 \ gm - mole$ gas, gas constant $R = 8.3 \ J/mo$ (a) $4.1 \ joule/K$ (b) $41 \ joule/K$ The function which remains constant if isobarically and isothermally is called (a) Internal energy (c) Helmholtz function Which of the following gives volume, V ? (a) $\left(\frac{\partial G}{\partial P}\right)_T$ (b) $\left(\frac{\partial U}{\partial V}\right)_X$ Where the symbols have their usual meaning Fermi level represents the energy level with (a) 0% (b) 25% The steady state conditions in diffusion are (a) Fick's second law (c) Both (1) and (2) The electronic polarizability, α_c of a monal electron, is	(a) $2kN \ln 2$ (b) $kN \ln 2$ (c) zero Where k is Baltzamann constant? The heat involved in going reversibly between two states can be multiplied with an integrating factor (a) $\frac{1}{V}$ (b) T (c) $\frac{1}{T}$ In an isothermal expansion of $10gm$ of nitrogen, its volume become volume. The change in entropy of nitrogen if molecular weight of $1gm-mole$ gas, gas constant $R=8.3J/mole-K$, is (a) $4.1joule/K$ (b) $41joule/K$ (c) $4.1erg/K$ The function which remains constant if the thermodynamic isobarically and isothermally is called (a) Internal energy (b) Gibbs' function (c) Helmholtz function (d) Enhalpy Which of the following gives volume, V ? (a) $\left(\frac{\partial G}{\partial P}\right)_T$ (b) $\left(\frac{\partial U}{\partial V}\right)_X$ (c) $-\left(\frac{\partial G}{\partial T}\right)_P$ Where the symbols have their usual meanings. Fermi level represents the energy level with probability of its occur, a) 0% (b) 25% (c) 50% The steady state conditions in diffusion are governed by (a) Fick's second law (b) Fick's first law (c) Both (1) and (2) (d) Maxwell-Boltzma electron, is

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

Q9.	With increase in temperature, the orientational polarization in general			
	(a) Decreases		(b) Increases	
	(c) Remains same		(d) None of these	
Q10.	The probability of oc	cupation of an energy	level E , when $E - EF$	T = KT, is given by
	(a) 0.73	(b) 0.63	(c) 0.5	(d) 0.27
Q11.	The frequency associ	ated with 20 mm wav	elength microwaves is	
	(a) 100 MHz	(b) 400 <i>MHz</i>	(c) 73 <i>MHz</i>	(d) 15 <i>GHz</i>
Q12.	Total current density,	, \overline{J} , equals		
	(a) Sum of current de	ensity due to free charg	e carriers and displace	ment current density
	(b) Current density d	ue to free charge carrie	ers only	
	(c) Displacement cur	rent density only		
	(d) None of these			
Q13.	The capacitance of tw	wo concentric metal she	ells, with radii a and b	b is
	(a) $\frac{Q}{4\pi\varepsilon_0} \left(\frac{1}{a} - \frac{1}{b} \right)$		(b) $4\pi\varepsilon_0 \frac{ab}{(b-a)}$	
	(c) $\frac{1}{4\pi\varepsilon_0} \frac{ab}{(b-a)}$		(d) $4\pi\varepsilon_0 Q \left(\frac{1}{a} - \frac{1}{b}\right)$	
Q14.	For glass-air interfa	ace ($ng = 1.5$ and ne	a=1) for normal in	cidence, the reflection
	coefficient is			,
	(a) 0.2	(b) 0.04	(c) 0.98	(d) 0.96
Q15.	The total energy dens	sity associated with an	electromagnetic wave	in free space is
	(a) $\frac{1}{2}\varepsilon_0 E_{rms}^2$	(b) $\varepsilon_0 E_{rms}^2$	(c) $2\varepsilon_0 E_{rms}^2$	(d) None of these
	Where E_{rms} is the rm	ns value of electric field	d associated with the el	lectromagnetic wave?
Q16.	Electric flux associate	ed with a small surface	e area $d\bar{s}$ in an electric	c field \overline{E} is given by
	(a) $\vec{E} \cdot d \vec{s}$	(b) $\varepsilon_0 \overline{E} \cdot d \vec{s}$	(c) $\oint_{S} \vec{E} \cdot d\vec{s}$	(d) $\overline{E} \times d\overline{s}$

Q17.	. If a Gaussian surface encloses no charge, which of the following is true for a point inside			
	it			
	(a) Electric field must	be zero	(b) Electric pote	ential is zero
	(c) Electric field and p	otential are zero	(d) None of the	se
Q18.	Energy is not transferr	ed by		
	(a) Transverse progres	sive wave	(b) Longitudina	l progressive wave
	(c) Stationary wave		(d) Electromagn	netic wave
Q19.	9. The relation between permeability and susceptibility in <i>C.G.S.</i> system is			
	(a) $\mu = \mu_0 \left(1 + \chi\right)$		(b) $\mu = 1 + 4\pi\chi$	
	(c) $\mu = \frac{\mu_0}{4\pi} \left(1 + \chi \right)$		(d) $\mu = 1 + \chi$	
Q20.	Lorentz unit is			
	(a) $\frac{eB}{4\pi mc}$	(b) $\frac{eB}{4\pi m}$	(c) $\frac{eB}{4\pi hmc}$	(d) $\frac{eB}{4\pi h}$
Q21.	The unit of magnetic r	noment is		
	(a) erg-gauss		(b) erg ⁻¹ gauss ⁻¹	
	(c) m-gauss		(d) Bohr magne	eton
Q22.	Very low temperatures	s can be produced	by	
	(a) Adiabatic demagne	etisation of a paran	nagnetic salt	
	(b) Adiabatic magnetis	sation of a parama	gnetic salt	
	(c) Isothermal magnet	sation of diamagn	etic salt	
	(d) Isothermal demagn	etisation of diama	gnetic salt	
Q23.	The SI unit of \vec{B} is			
	(a) Tesla		(b) Gauss	
	(c) Tesla mt Amp ²		(d) $Amp - mt^2$	
Q24.	A solenoid having a r	esistance of 5Ω and	nd self inductance o	of 4 Henry, is connected to a
	battery of emf 10volt	and negligible res	sistance. After how	long current will become 1A
	in it?			
		(b) 10.55 Sec	(c) 2 Sec	(d) 2.2 Sec

Q25.	An $L-C-R$ circuit	will oscillate if		
	(a) $R > LC$	(b) $R < \sqrt[1]{\frac{L}{C}}$	(c) $R > \sqrt[2]{\frac{L}{C}}$	(d) $R = \frac{L}{C}$
Q26.	The lag angle betwee	n the current and appli	ed emf in a series LR	circuit is given by
	(a) $\tan^{-1} \frac{1}{WLR}$	(b) $\tan^{-1} \frac{WL}{R}$	(c) $tan^{-1}WLR$	(d) $\tan^{-1}(R)$
Q27.	The quality factor of	a series $L-C-R$ circ	uit is given by	
	(a) $\frac{1}{WLR}$	(b) WCR	(c) $\frac{WL}{R}$	(d) WLR
Q28.	For a good conductor	, the spin depth varies	as	
	(a) Inversely as angul	lar frequency ω	(b) Directly as ω	
	(c) Inversely as $\sqrt{\omega}$		(d) Directly as $\sqrt{\omega}$	
Q29.	The dielectric const	ant, ε of water is 80	. This does not justi	ify its refractive index
	$n = 1.33$, violating the expression $n^2 = \varepsilon$. This is because,			
	(a) The water molecu	le has no permanent di	pole moment	
	(b) The boiling point	of water is $100^{\circ}C$		
	(c) The two quantities	s are measured at diffe	rent frequencies	
	(d) Water is transpare	ent to visible light		
Q30.	Propagation of electronic	romagnetic waves in	a medium with freque	ency dependence phase
	velocity is called			
	(a) Reflection		(b) Refraction	
	(c) Polarization		(d) Dispersion	
Q31.	If σ be conductivity	γ and ε , permittivity	of a medium with s	inusoidal time varying
	electric field E of an	gular frequency, ω , th	en the ratio of displace	ement current density to
	the conduction currer	nt density will be		
	(a) $\frac{\sigma}{E\varepsilon}$	(b) $\frac{\omega \varepsilon}{\sigma}$	(c) $\frac{\sigma}{\omega \varepsilon}$	(d) $\frac{E\varepsilon}{\omega}$
Q32.	For sinusoidally var	rying electric field, th	ne conduction current	and the displacement
	current differ in phase	e by		
	(a) 180 degree	(b) zero degree	(c) 90 degree	(d) 45 degree

Q33.	A bubbled (input inverted) ORgate is equivalent to			
	(a) NOR gate	(b) NAND gate	(c) NOT gate	(d) XNOR gate
Q34.	The most suitable gat	e for comparing two b	its is	
	(a) AND	(b) OR	(c) NAND	(d) X-OR
Q35.	Which of the following	ng gates cannot be use	d as an inverter?	
	(a) NAND	(b) AND	(c) NOR	(d) X-NOR
Q36.	How many NOR gate	es are required to obtai	n AND operation?	
	(a) 2	(b) 3	(c) 4	(d)1
Q37.	The velocity of an ele	ectron in first orbit of	H atom is (approximat	rely)
	(a) <i>C</i>		(b) $2.2 \times 10^6 m/\text{sec}$	
	(c) $5 \times 10^7 m/\text{sec}$		(d) $22 \times 10^7 m/\text{sec}$	
Q38.	For overlap interacti	on between nearest n	eighbours of the type	$, \phi(r) = B \exp\left(\frac{-r}{\rho}\right), B$
	and ρ are constants,	the equilibrium spacin	ng in terms of B and ρ	o is
	(a) $\rho \log eB$	(b) $\frac{\rho}{B}$	(c) $\frac{B}{\rho}$	(d) ρB
Q39.	If a charged particle	charge q and mass m	is accelerated throug	h a potential difference
	of V volts, the de Br	oglie wavelength associ	ciated with the particle	is
	(a) $\frac{h}{\sqrt{2meV}}$	(b) $\frac{h}{\sqrt{2mqV}}$	(c) $\frac{h}{\sqrt{2qV}}$	(d) $\frac{h}{\sqrt{2mV}}$
Q40.	Number of atoms in a	a unit cell in BCC lattic	ce is	
	(a) 8	(b)1	(c) 2	(d) 4
Q41.	Atomic packing factor	or for FCC lattice is a	pproximately	
	(a) 34%	(b) 52%	(c) 68%	(d) 74%
Q42.	Nearest neighbour di	stance in a simple cubi	c lattice with lattice pa	rameter a is
	(a) $a\sqrt{\frac{3}{2}}$	(b) <i>a</i>	(c) $\sqrt{2}a$	(d) $\sqrt{3}a$

Q43.	For a simple cubic	c lattice, the ratio of	density of points in (1	11) and (110) place is	
	(a) $\frac{2}{3}$	(b) $\frac{\sqrt{2}}{\sqrt{3}}$	(c) $\frac{9}{4}$	(d) $\frac{2}{5}$	
Q44.	If Fermi energy	of electrons in a m	etal at some temperat	ture T is $5.5eV$. The average	
	electron energy at	same temperature v	will be given by		
	(a) 33 <i>eV</i>	(b) 5.5 <i>eV</i>	(c) 3.3 <i>eV</i>	(d) zero eV	
Q45.	Which of the follo	owing characteristic	s does not necessarily a	apply to an op-amp?	
	(a) High gain		(b) Low power		
	(c) High input imp	pedance	(d) Low output	impedance	
Q46.	Common mode ga	ain in a differential	amplifier is		
	(a) Very high		(b) Very low		
	(c) Always unit		(d) Infinite	(d) Infinite	
Q47.	A certain non in	verting amplifier ha	as an R_i of $1k\Omega$ and a	an R_f of $100k\Omega$. The closed	
	loop gain is				
	(a) 10^6	(b) 10^3	(c) 101	(d) 100	
Q48.	A phase-shift osci	illator has			
	(a) Three RC circ	uits	(b) Three LC of	circuits	
	(c) a T - type circ	uit	(d) $a\pi$ - type c	ircuit	
Q49.	The figure given	below shows the	density of electron sta	ates versus energy for a free	
	electron gas in.				
	(a) Three-dimensi	ions	$D(E)\uparrow$		
	(b) One-dimensio	n			
	(c) Two-dimension	ons		\rightarrow	
	(d) None of these		E	\rightarrow	
Q50.	Specific impedance	ce of free space is			
	(a) 377Ω	(b) 500Ω	(c) 50Ω	(d) 100Ω	
Q51.	Zero-point is relat	ted to			
	(a) Quantization		(b) Lasers		
	(c) Uncertainty		(d) Duality		

Q52.	Stern-Gerlach experi	ment demonstrated		
	(a) Uncertainty princ	iple	(b) Quantization of a	ngular momentum
	(c) Duality		(d) None of these	
Q53.	The distance between	n (100) planes in a sim	nple cubic crystal with	unit cell side a is
	(a) <i>a</i>	(b) $\frac{a}{\sqrt{2}}$	(c) $\frac{a}{\sqrt{3}}$	(d) $\frac{a}{2}$
Q54.	The lenn value, T of	f a state is		
	(a) $\frac{E}{hc}$	(b) $-\frac{E}{hc}$	(c) $-\frac{E}{2\pi hc}$	(d) $-\frac{E}{2\pi hc}$
Q55.	The spectral term	value corresponding	to the ionisation pote	ential of Hg – atom is
	84178.5 <i>cm</i> . The ior	nisation potential of H_{δ}	g - atom is	
	(a) 15 <i>V</i>	(b) 10.4 <i>V</i>	(c) 13.6V	(d) 1V
Q56.	Which of the follow	ving best describes the	e relation between orb	ital angular momentum
	and corresponding m	agnetic moment of ele	ctron in an atom?	
	(a) $\vec{p}_c = \frac{-2m}{e}\vec{\mu}$	(b) $\vec{p}_c = \frac{2m}{e} \vec{\mu}_c$	(c) $\vec{p}_c = \frac{2m}{\hbar} \vec{\mu}_c$	(d) $\dot{p}_c = \dot{\mu}_c$
Q57.	If a well collimated	beam of Cu is allowed	d to pass through non-	-homogeneous magnetic
	field in Stern-Gerlach	h experiment, we get		
	(a) One trace		(b) Double trace	
	(c) No trace		(d) None of these	
Q58.	For ${}^{1}S_{0}$ state			
	(a) $J = 1$	(b) $J = 0$	(c) $J = \frac{3}{2}$	(d) $J = \frac{5}{2}$
Q59.	The magnitude of L	, for a d-electron, in on	ne-electron atomic syste	em is
	(a) 2	(b) $\sqrt{5} \hbar$	(c) $\sqrt{3} \hbar$	(d) $\sqrt{7} \hbar$
Q60.	In alkali spectral seri	es, when one goes tow	ards higher value of n	,
	(a) Doublet separation	on increases	(b) Doublet separation	on decreases
	(c) Separations rema	ins the same	(d) (a) and (c)	

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q61.	. The transition $n^2P \rightarrow 3$ 2S_1 $n = 3, 4, 5$, in alkali atom gives				
	(a) Sharp series		(b) Principal series		
	(c) Diffuse series		(d) Fundaamental ser	ies	
Q62.	In the following lines	of a doublet:			
	$^{2}S_{1/2}$	$-{}^{2}P_{1/2} {}^{2}S_{1/2} \leftarrow {}^{2}P_{3/2}$			
	(a) 1 st line is stronger				
	(b) 2 nd line is stronger	r			
	(c) Both lies have the	•			
	(d) Intensity of 2 nd lin	e is half that of 1st			
Q63.	63. For the level 3D_3 , the Lange's splitting factor g is				
	(a) $\frac{7}{3}$	(b) $\frac{5}{3}$	(c) $\frac{4}{3}$	(d) zero	
Q64.	64. In normal Zeeman effect, selection rule $\Delta M_L = 0$ gives				
	(a) π Components		(b) σ Components		
	(c) Unpolarized comp	ponents	(d) γ -Components		
Q65.	If one state is occup	pied (or allowed) for	one micro particle a	nd is denied for other	
	particles, the particles	s are			
	(a) Bosons		(b) Fermions		
	(c) Phonon		(d) Photons		
Q66.	The main component	responsible for the fa	all of gain of an RC co	oupled amplifier in low	
	frequency range is				
	(a) The active device	itself	(b) Coupling capacitance		
	(c) Load resistance		(d) Junction capacitan	nce	
Q67.	Compared to a CB an	nplifier, the CE amplif	ier has		
	(a) Lower input resist	ance	(b) Higher output resistance		
	(c) Lower current am	plification	(d) Higher current an	nplification	
Q68.	$r^n \vec{r}$ is solenoidal for				
	(a) $n = 3$	(b) $n = -3$	(c) $n = 2$	(d) $n = -2$	

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q69. If
$$I = \int_{0}^{\infty} e^{-au^2} du$$
, then

- (a) $I = \sqrt{\frac{\pi}{a}}$ (b) $I = \frac{1}{2}\sqrt{\frac{\pi}{a}}$ (c) $I = \frac{3}{8}\sqrt{\frac{\pi}{a}}$ (d) $I = \sqrt{\frac{\pi}{2a}}$
- The coefficient of t^n in the expansion of the function $e^{\frac{x}{2}\left(t-\frac{1}{t}\right)}$ is called Q70.
 - (a) The Legendre function
 - (b) The Bessel function of first kind of order n
 - (c) Laugurre function
 - (d) Hermite polynomial of order n
- $H_{n-1}(x) + H_{n+1}(x)$ Equals (where terms have their usual meanings) Q71.
 - (a) $\frac{2n}{n}H_n(x)$ (b) $2nH_n(x)$ (c) $2H_n^r(x)$ (d) $H_{n+2}(x)$

- Q72. Transpose conjugate of two matrices A and B i.e., (AB)' equals
 - (a) $A^{+}B^{+}$
- (b) $B^{+}A^{+}$
- (c) B'A'
- (d) AB
- The product of a singular matrix with its ad joint gives Q73.
 - (a) a unitary matrix

(b) a null matrix

(c) a diagonal matrix

- (d) None of these
- Q74. The generalised momenta is defined by

 - (a) $p_i = \frac{\partial L}{\partial a_i}$ (b) $p_i = \frac{\partial H}{\partial a_i}$
- (c) $p_i = \frac{\partial L}{\partial q_i}$ (d) $p_i = \frac{\partial H}{\partial q_i}$
- Q75. If $\delta(x)$ is delta function then
 - (a) $x\delta(x) = x$

(b) $x\delta x = \delta x$

(c) $x\delta(x) = 0$

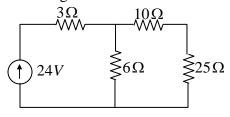
(d) $\delta(x) = \infty$

- Q76. 1*m* Curie is equal to
 - (a) 3.7×10^7 disintegrations/sec
- (b) 3.7×10^{10} disintegrations/sec

(c) 10⁶ disintegrations/sec

(d) 10³ disintegrations/sec

Q//.	Nuclei with even mas	ss numbers nave		
	(a) Zero or integral sp	oin	(b) Half integral spin	
	(c) Imaginary spin		(d) None of these	
Q78.	In Mosley's law, $\sqrt{v} = a(z-b)$, the screening constant b for K series is			series is
	(a) 1	(b) 7.4	(c) 19.6	(d) 2.7
Q79.	For crystals, having	two atoms per primitiv	ve cell, square of angu	alar frequency of lattice
	vibration is given by $\omega^2 = \frac{C/2}{M_1 + M_2} K^2 a^2$ corresponds to			
	(a) Optical branch			
	(b) Acoustical branch	1		
	(c) To both acoustica	l and optical branches		
(d) Band gap				
Q80.	The wave vector asso	ociated with free electronic	ons at Fermi surface ha	as magnitudes
	(a) $\left(\frac{2mE_F}{\hbar^2}\right)^{1/2}$	(b) $\frac{2mE_F}{\hbar^2}$	(c) $\left(\frac{2m}{\hbar^2}\right)^{\frac{1}{2}}$	$(d) \left(\frac{2mE_F}{\hbar^2}\right)^{\frac{3}{2}}$
Q81.	The total forward el	ectric current, includir	ng the effects of both	holes and electrons, in
	p-n junction is give	en by		
	(a) $I = I_0 \left(e^{\frac{eV}{KT}} - 1 \right)$		(b) $I = I_0 \left(e^{\frac{-eV}{KT}} - 1 \right)$	
	(c) $I = I_0$		(d) $I = I_0 e^{\frac{eV}{KT}}$	
	Where the terms have	e their usual meaning.		
Q82.	Compton wavelength	$\frac{h}{m_0 e}$ equals		
	(a) $0.024 \stackrel{0}{A}$	(b) $0.012 \stackrel{0}{A}$	(c) 2.4 nm	(d) $2.4 \times 10^{-11} \ m$
Q83.	According to free elemental is	ectron theory of meals,	, potential experienced	by electrons inside the
	(a) A constant large p	ootential	(b) A variable potent	ial
	(c) Zero potential		(d) Periodic potential	



Q84.	4. Energy equivalent to rest mass of electron is			
	(a) 1.02 <i>MeV</i>	(b) 0.51 <i>MeV</i>	(c) 1.53 <i>MeV</i>	(d) 0.51keV
Q85.	A particle is moving	with 90% of the veloc	city of light. Ratio of i	ts relativistic mass with
	its rest mass is			
	(a) 2.29	(b) 3.00	(c) 5.00	(d) 2.00
Q86.	In a solenoid, magnet	ic field is maximum at	t	
	(a) Its centre		(b) Ends	
	(c) Away from it		(d) None of these	
Q87.	Two interfering cohe	rent waves have ample	itudes in the ratio 2:1.	The ratio of maximum
	to minimum intensity	is		
	(a) 9:1	(b) 3:1	(c) 12:1	(d) 4:1
Q88.	In Fresnel's biprism,	coherent sources are fo	ormed due to	
	(a) Division of amplit	tude	(b) Multiple reflection	
	(c) Division of wavef	ront	(d) reflection	
Q89.	In colour photograph	y		
	(a) Progressive wave-	-formation is used		
	(b) The formation of	stationary waves is use	ed	
	(c) Diffraction is used			
	(d) Reflection is used			
Q90.	In case of Newton's r	ring, central ring will b	e dark in	
	(a) Reflected system	of light		
	(b) Transmitted syste	m		
	(c) In reflected as well	ll as transmitted system	n	
	(d) In case plano-cov	ex lens is silvered		
Q91.	Diffraction of light c	can be exhibited by lig	ght with an obstacle h	aving dimension of the
	order of			
	(a) 100 <i>cm</i>	(b) 10 <i>cm</i>	(c) 10^{-5} cm	(d) 10 <i>m</i>
Q92.	At polarising angles,	reflected and refracted	rays are	
	(a) Parallel	(b) Antiparallel	(c) at 90°	(d) at 45°

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

The Thevenin equivalent voltage for the network shown is Q93.

- (a) 24*V*
- (b) 12V
- (d) 8 V
- A certain JFET has a $g_m = 4 ms$. With an ac drain resistance of $1.5 k\Omega$ the ideal voltage Q94. gain is
 - (a) 6×10^3
- (b) 2.6
- (c) 6

- (d) 2.6×10^3
- The wavelength associated with an electron accelerated through a potential difference O95. 100 V is
 - (a) 1.2 Å°

- (c) 12 nm (d) 1.22 pm
- The typical de Broglie wavelength of an electron in a metal at TK is Q96.
- (a) $\lambda = \frac{1}{\sqrt{3mKT}}$ (b) $\lambda = \frac{h}{\sqrt{3mKT}}$ (c) $\lambda = \frac{hl2}{\sqrt{3mKT}}$ (d) $\lambda = \frac{h}{\sqrt{2mKT}}$
- Slow neutrons are incident on a sample of Uranium containing both $\frac{235}{92}U$ and $\frac{238}{92}U$ Q97. isotopes, then
 - (a) Both isotopes will undergo fission and breakup
 - (b) Only $\frac{235}{92}U$ atoms undergo fission
 - (c) Only $\frac{238}{92}U$ atoms undergo fission
 - (d) None of the isotopes will break up
- The half life of $^{218}P_0$ is 3 minute. What fraction of a 10 gm sample of $^{218}P_0$ will remain Q98. after 15 minutes?
 - (a) $\frac{1}{5}$
- (b) $\frac{1}{25}$ (c) $\frac{1}{32}$ (d) $\frac{1}{64}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Hard magnetic material is characterized by

Q99.

	(a) High coercive force and high residual magnetic induction			
	(b) Low coercive force and low residual magnetic induction			
	(c) Only low coercive force			
	(d) High coercive force and high residual m	agnetic induction		
Q100.	The density of carriers in a pure semiconduc	ctor is proportional to		
	(a) $\exp\left(\frac{-Eg}{KT}\right)$ (b) $\exp\left(\frac{-2Eg}{KT}\right)$	(c) $\exp\left(\frac{-Eg}{KT^2}\right)$ (d) $\exp\left(\frac{-Eg}{2KT}\right)$		
Q101.	Imperfection arising due to the displacement	t of an ion from a regular site to an interstitial		
	site maintaining overall electrical neutrality	of ionic crystal is called		
	(a) Frenkel imperfection	(b) Schottky imperfection		
	(c) Point imperfection	(d) Volume defect		
Q102.	Miller indices of the diagonal plane of a cub	e are		
	(a) (200) (b) (111)	(c) (010) (d) (110)		
Q103.	If the load resistance of capacitor filtered fu	ll wave rectifier is reduced, the ripple voltage		
	(a) Increases	(b) Decreases		
	(c) Is not affected	(d) has a different frequency		
Q104.	If one of the diodes in bridge full wave recti	fier opens, the output is		
	(a) 0V			
	(b) One-fourth the amplitude of the input vo	ltage		
	(c) A half-wave rectified voltage			
	(d) A 100 Hz voltage			
Q105.	When operated in cut-off and saturation, the	transistor acts like		
	(a) a linear amplifier	(b) a switch		
	(c) a variable capacitor	(d) a variable resistor		
Q106.	The low frequency response of an amplifier	is determined in part by		
	(a) the voltage gain	(b) the type of transistor		
	(c) the supply voltage	(d) the coupling capacitors		

				No. of the last of
Q107.	If the rate of change	of current in a current	carrying coil is unity,	then the induced emf is
	equal to			
	(a) Coefficient of self	induction	(b) Magnetic flux link	ked with the coil
	(c) number of turns in	the coil	(d) Thickness of the c	oil
Q108.	The velocity of the e	jected photoelectrons of	lepends upon the	
	(a) Frequency of incid	dent light	(b) Intensity of incide	nt light
	(c) Both (a) and (b)		(d) Neither (a) nor (2))
Q109.	If the electron in a hy	drogen atom jumps fr	om an orbit with level	$n_i = 3$ to an orbit with
	level $n_f = 2$, the emit	ted radiation has a way	velength given by	
	(a) $\lambda = \frac{36}{5R}$		(b) $\lambda = \frac{5R}{36}$ (d) $\lambda = \frac{R}{6}$	
	(a) $\lambda = \frac{36}{5R}$ (c) $\lambda = \frac{6}{R}$		(d) $\lambda = \frac{R}{6}$	
	Where R is Rydberg constant.			
Q110.	Consider α -particle,	β -particles and γ -ray	ys, each having an ene	ergy of $0.5 MeV$. In the
	increasing order of pe	enetrating powers, the i	radiations are	
	(a) α, β, γ	(b) α, γ, β	(c) β, γ, α	(d) γ, β, α
Q111.	The wavelength of γ	-rays is of the order of		
	(a) 10 ⁻⁷ metre	(b) 10 ⁻¹⁰ metre	(c) 10^{-12} metre	$(d)10^{-8}$ metre
Q112.	$\left[L^2, L_z\right]$ Equals			
	(a) $i\hbar L_x$	(b) $i\hbar L_y$	(c) zero	(d) $\hbar L_z$
Q113.	An electron falls from	n rest in a region with	potential difference of	of $100V$. The deBroglie
	wavelength associated	d with electron will be	nearly	
	(a) 12.3 <i>nm</i>	(b) 1.23 <i>nm</i>	(c) 123 <i>nm</i>	(d) 0.123 nm
Q114.	An electron magnetic	wave going through v	acuum is described by	
	$E = E_0 \sin(kx - \omega t) A$	and $B = B_0 \sin(kx - \omega t)$, then	
	(a) $E_0K = B_0\omega$	(b) $E_0 B_0 = \omega K$	(c) $E_0 \omega = B_0 K$	$(d) \frac{E_0}{B_0} = \frac{\omega}{K}$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Q115. The energy density of states of an electron in a one-dimensional potential well of

infinitely high walls is (the symbols have their usual meaning)

	(a) $\frac{L\sqrt{m}}{\pi\hbar\sqrt{2E}}$	(b) $\frac{Lm}{\pi\hbar\sqrt{E}}$	(c) $\frac{Lm}{\pi\hbar\sqrt{2E}}$	(d) $\frac{L\sqrt{m}}{2\pi\hbar E}$
Q116.	The commutator $[x,$	[px], where x and	px are position	and momentum operator
	respectively, is			
	(a) $2i\hbar px$	(b) $-i\hbar px$	(c) 2 <i>iħxpx</i>	$(d)-2i\hbar xpx$
Q117.	Value of $[f(x), px^2]$ is			
	(a) <i>iħ</i>	(b) $i\hbar \frac{\partial f}{\partial x}$	(c) $i\hbar \frac{\partial f}{\partial px}$	(d) n iħ
Q118.	8. The equation of states of a dilute gas at very high temperature is described by $\frac{pV}{K_BT} = 1 + \frac{B(T)}{V}$, where V is the volume per particle and $B(T)$ is a -ve quantity. On			
	can conclude that this is a property of			
	(a) A van der Waals' gas		(b) an ideal Fermi gas	
	(c) An ideal Bose gas		(d) an ideal inert gas	
Q119.	9. Which of the following relations between the particle number density n at temperature T , must hold good for a gas consisting of non-interacting particles to described by quantum statistics?			
	(a) $\frac{n}{T^{1/2}} << 1$		(b) $\frac{n}{T^{3/2}} << 1$	
	(c) $\frac{n}{T^{3/2}} >> 1$		(d) $\frac{n}{T^{1/2}}$ and $\frac{n}{T^{3/2}}$	can have any values
Q120.	O. If the kinetic energy of a body is twice its rest mass energy, what will be the ratio relativistic mass to the rest mass of the body			

(c) $\frac{1}{2}$

(d) 2

(a) 3

(b) 1