## An Institute of NET-JRF, IIT-JAM, GATE, |EST,IIFR \& MSE Entrance in Physics \& Phyiscol Sciences

## fiziks

## IIT-JAM 2021: Question Paper Physics

Follow us @



Download Physics by fiziks App Official Website : http://physicsbyfiziks.com

For Enquiry Call us :
@ 011-2686-5455, +91-9871145498
Email us : fiziks.physics@gmail.com

Head Office
Physics by fiziks
House No. 40-D, Ground Floor, Jia Sarai
Near IIT-Delhi, Hauz Khas, New Delhi-110016

IIT-JAM 2021

## SECTION - A

## Multiple Choice Questions (MCQ)

## Q1 - Q10 Carry One Mark Each

Q1. The function $e^{\cos x}$ is Taylor expanded about $x=0$. The coefficient of $x^{2}$ is
(a) $-\frac{1}{2}$
(b) $-\frac{e}{2}$
(c) $\frac{e}{2}$
(d) Zero

Ans. : (b)
Q2. Let $M$ be a $2 \times 2$ matrix. Its trace is 6 and its determinant has value 8 . Its eigenvalues are
(a) 2 and 4
(b) 3 and 3
(c) 2 and 6
(d) -2 and -3

Ans. : (a)
Q3. A planet is in a highly eccentric orbit about a star. The distance of its closest approach is 300 times smaller than its farthest distance from the star. If the corresponding speeds are $v_{c}$ and $v_{f}$, then $\frac{v_{c}}{v_{f}}$ is
(a) $\frac{1}{300}$
(b) $\frac{1}{\sqrt{300}}$
(c) $\sqrt{300}$
(d) 300

Ans. : (d)
Q4. An object of density $\rho$ is floating in a liquid with $75 \%$ of its volume submerged. The density of the liquid is
(a) $\frac{4}{3} \rho$
(b) $\frac{3}{2} \rho$
(c) $\frac{8}{5} \rho$
(d) $2 \rho$

Ans. : (a)
Q5. An experiment with a Michelson interferometer is performed in vacuum using a laser of wavelength 610 nm . One of the beams of the interferometer passes through a small glass cavity 1.3 cm long. After the cavity is completely filled with a medium of refractive index $n, 472$ dark fringes are counted to move past a reference line. Given that the speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, the value of $n$ is
(a) 1.01
(b) 1.04
(c) 1.06
(d) 1.10

Ans. : (a)

Q6. For a semiconductor material, the conventional flat band energy diagram is shown in the figure. The variables $Y, X$ respectively, are
(a) Energy, Momentum
(b) Energy, Distance
(c) Distance, Energy
(d) Momentum, Energy


Ans. : (b)
Q7. For the given circuit, $V_{D}$ is the threshold voltage of the diode. The graph that best deposits variation of $V_{0}$ with $V_{i}$ is

(a)

(b)

(c)

(d)


Ans. : (a)

## Physics by fiziks

Q8. Arrange the following telescopes, where $D$ is the telescope diameter and $\lambda$ is the wavelength, in order of decreasing resolving power:
I. $D=100 \mathrm{~m}, \lambda=21 \mathrm{~cm}$
II. $D=2 m, \lambda=500 \mathrm{~nm}$
III. $D=1 \mathrm{~m}, \lambda=100 \mathrm{~nm}$
IV. $D=2 \mathrm{~m}, \lambda=10 \mathrm{~mm}$
(a) III, II, IV, I
(b) II, III, I, IV
(c) IV, III, II, I
(d) III, II, I, IV

Ans. : (d)
Q9. Metallic lithium has bcc crystal structure. Each unit cell is a cube of side $a$. The number of atoms per unit volume is
(a) $\frac{1}{a^{3}}$
(b) $\frac{2}{\sqrt{2} a^{3}}$
(c) $\frac{2}{a^{3}}$
(d) $\frac{4}{a^{3}}$

Ans. : (c)
Q10. The moment of inertia of a solid sphere (radius $R$ and mass $M$ ) about the axis which is at a distance of $\frac{R}{2}$ from the centre is
(a) $\frac{3}{20} M R^{2}$
(b) $\frac{1}{2} M R^{2}$
(c) $\frac{13}{20} M R^{2}$
(d) $\frac{9}{10} M R^{2}$

Ans. : (c)

Q11 - Q30. carry two marks each
Q11. Let $(x, y)$ denote the coordinates in a rectangular Cartesian coordinate system $C$. Let ( $x^{\prime}, y^{\prime}$ ) denote the coordinates in another coordinate system $C^{\prime}$ defined by

$$
\begin{aligned}
& x^{\prime}=2 x+3 y \\
& y^{\prime}=-3 x+4 y
\end{aligned}
$$

The area element in $C^{\prime}$, is
(a) $\frac{1}{17} d x^{\prime} d y^{\prime}$
(b) $12 d x^{\prime} d y^{\prime}$
(c) $d x^{\prime} d y^{\prime}$
(d) $x^{\prime} d x^{\prime} d y^{\prime}$

Ans. : (a)
Q12. Three events, $E_{1}(c t=0, x=0), E_{2}(c t=0, x=L)$ and $E_{3}(c t=0, x=-L)$ occur, as observed in an inertial frame $S$. Frame $S^{\prime}$ is moving with a speed $v$ along the positive $x$-direction with respect to $S$. In $S^{\prime}$, let $t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}$ be the respective times at which $E_{1}, E_{2}$ and $E_{3}$ occurred. Then,
(a) $t_{2}^{\prime}<t_{1}^{\prime}<t_{3}^{\prime}$
(b) $t_{1}^{\prime}=t_{2}^{\prime}=t_{3}^{\prime}$
(c) $t_{3}^{\prime}<t_{1}^{\prime}<t_{2}^{\prime}$
(d) $t_{3}^{\prime}<t_{2}^{\prime}<t_{1}^{\prime}$

Ans. : (a)
Q13. The solution $y(x)$ of the differential equation $y \frac{d y}{d x}+3 x=0, y(1)=0$, is described by
(a) an ellipse
(b) a circle
(c) a parabola
(d) a straight line

Ans.: (a)
Q14. In the figure below, point $A$ is the object and point $B$ is the image formed by the lens. Let $l_{1}, l_{2}$ and $l_{3}$ denote the optical path lengths of the three rays 1,2 and 3 , respectively. Identify the correct statement.

(a) $l_{1}=l_{2}=l_{3}$
(b) $l_{1}>l_{2}<l_{3}$
(c) $l_{1}=l_{3}<l_{2}$
(d) $l_{1}=l_{3}>l_{2}$

Ans. : (a)

Q15. A particle initially at the origin in an inertial frame $S$, has a constant velocity $\hat{i}$. Frame $S^{\prime}$ is rotating about the $z$ - axis with angular velocity $\omega$ (anticlockwise). The coordinate axes of $S^{\prime}$ coincide with those of $S$ at $t=0$. The velocity of the particle $\left(V_{x}^{\prime}, V_{y}^{\prime}\right)$ in the $S^{\prime}$ frame, at $t=\frac{\pi}{2 \omega}$ is
(a) $\left(-\frac{V \pi}{2},-V\right)$
(b) $(-V,-V)$
(c) $\left(\frac{V \pi}{2},-V\right)$
(d) $\left(\frac{3 V \pi}{2},-V\right)$

Ans. : (a)
Q16. For the given circuit, the output $Y$ is

(a) 0
(b) 1
(c) $A$
(d) $\bar{A}$

Ans. : (d)
Q17. The total charge contained within the cube (see figure), in which the electric field is given by $\vec{E}=K\left(4 x^{2} \hat{i}+3 y \hat{j}\right)$, where $\varepsilon_{0}$ is the permittivity of free space, is

(a) $7 K \varepsilon_{0}$
(b) $5 K \varepsilon_{0}$
(c) $33 K \varepsilon_{0}$
(d) Zero

Ans. : (a)
Q18. Four charges are placed very closed to each other, as shown. The separation between the two charges on the $y$-axis is $a$. The separation between the two charges on the $x$-axis is also $a$. The leading order (non-vanishing) form of the electrostatic potential, at point $P$, at a distance $r$ from the origin $(r \gg a)$, is

(a) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{2 r^{2}}(\sqrt{3}-1)$
(b) $\frac{1}{4 \pi \varepsilon_{0}} \frac{2 q a}{r^{2}}$
(c) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}(\sqrt{5}-1)$
(d) $\frac{1}{4 \pi \varepsilon_{0}} \frac{q a}{r^{2}}(1-\sqrt{3})$

## Ans. : (a)

Q19. At $t=0, N_{0}$ number of a radioactive nuclei $A$ start decaying into $B$ with a decay constant $\lambda_{a}$. The daughter nuclei $B$ decay into nuclei $C$ with a decay constant $\lambda_{b}$. Then, the number of nuclei $B$ at small time $t$ (to the leading order) is
(a) $\lambda_{a} N_{0} t$
(b) $\left(\lambda_{a}-\lambda_{b}\right) N_{0} t$
(c) $\left(\lambda_{a}+\lambda_{b}\right) N_{0} t$
(d) $\lambda_{b} N_{0} t$

Ans. : (a)
Q20. The electric field of an electromagnetic wave has the form $\vec{E}=E_{0} \cos (\omega t-k z) \hat{i}$. At $t=0$, a test particle of charge $q$ is at $z=0$, and has velocity $\vec{v}=0.5 c \hat{k}$, where $c$ is the speed of light. The total instantaneous force on the particle is
(a) $\frac{q E_{0}}{2} \hat{i}$
(b) $\frac{q E_{0}}{\sqrt{2}}(\hat{i}+\hat{j})$
(c) $\frac{q E_{0}}{2}(\hat{i}-\hat{k})$
(d) Zero

Ans. : (a)
Q21. The $r m s$ velocity of molecules of oxygen gas is given by $v$ at some temperature $T$. The molecules of another gas have the same rms velocity at temperature $\frac{T}{16}$. The second gas is
(a) Hydrogen
(b) Helium
(c) Nitrogen
(d) Neon

Ans. : (a)

Q22. A system undergoes a thermodynamic transformation from state $S_{1}$ to state $S_{2}$ via two different paths 1 and 2. The heat absorbed and work done along path 1 are 50 J and 30 J , respectively. If the heat absorbed along path 2 is $30 J$, the work done along path 2 is
(a) Zero
(b) 10 J
(c) 20 J
(d) 30 J

Ans. : (b)
Q23. The condition for maxima in the interference of two waves

$$
A e^{i\left(\frac{k_{0}}{2}(\sqrt{3} x+y)-\omega t\right)} \text { and } A e^{i\left(\frac{k_{0}}{\sqrt{2}}(x+y)-\omega t\right)}
$$

is given in terms of the wavelength $\lambda$ and $m$, an integer, by
(a) $(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y=2 m \lambda$
(b) $(\sqrt{3}+\sqrt{2}) x+(1-\sqrt{2}) y=2 m \lambda$
(c) $(\sqrt{3}-\sqrt{2}) x-(1-\sqrt{2}) y=m \lambda$
(d) $(\sqrt{3}-\sqrt{2}) x+(1-\sqrt{2}) y=(2 m+1) \lambda$

Ans.: (a)
Q24. A semiconductor $p n$ junction at thermal equilibrium has the space charge density $\rho(x)$ profile as shown in the figure. The figure that best depicts the variation of the electric field $E$ with $x$ is ( $W$ denotes the width of the depletion layer)

(a)

(b)

(c)

(d)


Q25. A mass $m$ is connected to a massless spring of spring constant $k$, which is fixed to a wall.
Another mass $2 m$, having kinetic energy $E$, collides collinearly with the mass $m$ completely inelastically (see figure). The entire set up is placed on a frictionless floor. The maximum compression of the spring is

(a) $\sqrt{\frac{4 E}{3 k}}$
(b) $\sqrt{\frac{E}{3 k}}$
(c) $\sqrt{\frac{E}{5 k}}$
(d) $\sqrt{\frac{E}{7 k}}$

Ans. : (a)
Q26. A linearly polarized light falls on a quarter wave plate and the emerging light is found to be elliptically polarized. The angle between the fast axis of the quarter wave plate and the plane of polarization of the incident light, can be
(a) $30^{\circ}$
(b) $45^{0}$
(c) $90^{\circ}$
(d) $180^{\circ}$

Ans.: (a)
Q27. The expression for the magnetic field that induces the electric field

$$
\vec{E}=K(y z \hat{i}+3 z \hat{j}+4 y \hat{k}) \cos (\omega t) \text { is }
$$

(a) $-\frac{K}{\omega}(\hat{i}+y \hat{j}-z \hat{k}) \sin (\omega t)$
(b) $-\frac{K}{\omega}(\hat{i}+y \hat{j}+z \hat{k}) \sin (\omega t)$
(c) $-\frac{K}{\omega}(\hat{i}-y \hat{j}+z \hat{k}) \sin (\omega t)$
(d) $-\frac{K}{\omega}(-\hat{i}+y \hat{j}+z \hat{k}) \sin (\omega t)$

Ans. : (a)
Q28. In the Fourier series expansion of two functions $f_{1}(t)=4 t^{2}+3$ and $f_{2}(t)=6 t^{3}+7 t$ in the interval $-\frac{T}{2}$ to $+\frac{T}{2}$, the Fourier coefficient $a_{n}$ and $b_{n}\left(a_{n}\right.$ and $b_{n}$ are coefficients of $\cos (n \omega t)$ and $\sin (n \omega t)$, respectively) satisfy
(a) $a_{n}=0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n} \neq 0$ and $b_{n}=0$ for $f_{2}(t)$
(b) $a_{n} \neq 0$ and $b_{n}=0$ for $f_{1}(t) ; a_{n}=0$ and $b_{n} \neq 0$ for $f_{2}(t)$
(c) $a_{n} \neq 0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n}=0$ and $b_{n} \neq 0$ for $f_{2}(t)$
(d) $a_{n}=0$ and $b_{n} \neq 0$ for $f_{1}(t) ; a_{n} \neq 0$ and $b_{n} \neq 0$ for $f_{2}(t)$

Ans. : (b)

Q29. A thin circular disc lying in the $x y$-plane has a surface mass density $\sigma$, given by

$$
\sigma(r)=\left\{\begin{array}{cc}
\sigma_{0}\left(1-\frac{r^{2}}{R^{2}}\right) & \text { if } r \leq R \\
0 & \text { if } r>R
\end{array}\right.
$$

where $r$ is the distance from its center. Its moment of inertia about the $z$-axis, passing through its center is
(a) $\frac{\sigma_{0} R^{4}}{4}$
(b) $\frac{\pi \sigma_{0} R^{4}}{6}$
(c) $\sigma_{0} R^{4}$
(d) $2 \pi \sigma_{0} R^{4}$

Ans. : (b)
Q30. The radial component of acceleration in plane polar coordinates is given by Newton
(a) $\frac{d^{2} r}{d t^{2}}$
(b) $\frac{d^{2} r}{d t^{2}}-r\left(\frac{d \theta}{d t}\right)^{2}$
(c) $\frac{d^{2} r}{d t^{2}}+r\left(\frac{d \theta}{d t}\right)^{2}$
(d) $2 \frac{d r}{d t} \frac{d \theta}{d t}+r \frac{d^{2} \theta}{d t^{2}}$

Ans. : (b)

## Physics by fiziks

An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

## Our Courses



Onfine Live Classes


Online Test Series


Visit Our Website: www.physicsbyfiziks.com


YouTuhe


Download : Physics by fiziks App


## SECTION - B

## MULTIPLE SELECT QUESTIONS (MSQ)

## Q31 - Q40 Carry Two Marks Each

Q31. A gaseous system, enclosed in an adiabatic container, is in equilibrium at pressure $P_{1}$ and volume $V_{1}$. Work is done on the system in a quasi-static manner due to which the pressure and volume change to $P_{2}$ and $V_{2}$, respectively, in the final equilibrium state. At every instant, the pressure and volume obey the condition $P V^{\gamma}=C$, where $\gamma=\frac{C_{P}}{C_{V}}$ and $C$ is a constant. If the work done is zero, then identify the correct statement(s)
(a) $P_{2} V_{2}=P_{1} V_{1}$
(b) $P_{2} V_{2}=\gamma P_{1} V_{1}$
(c) $P_{2} V_{2}=(\gamma+1) P_{1} V_{1}$
(d) $P_{2} V_{2}=(\gamma-1) P_{1} V_{1}$

Ans.: (a)
Q32. An isolated ideal gas is kept at pressure $P_{1}$ and volume $V_{1}$. The gas undergoes free expansion and attains a pressure $P_{2}$ and volume $V_{2}$. Identify the correct statements(s) $\left(\gamma=\frac{C_{P}}{C_{V}}\right)$
(a) This is an adiabatic process
(b) $P_{1} V_{1}=P_{2} V_{2}$
(c) $P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
(d) This is an isobaric process

Ans. : (a), (b)
Q33. A beam of light travelling horizontally consists of an unpolarized component with intensity $I_{0}$ and a polarized component with intensity $I_{p}$. The plane of polarization is oriented at an angle $\theta$ with respect to the vertical. The figure shows the total intensity $I_{\text {total }}$ after the light passes through a polarizer as a function of the angle $\alpha$, that the axis of the polarizer makes with respect to the vertical. Identify the correct statements(s)

(a) $\theta=125^{0}$
(b) $I_{p}=5 \mathrm{~W} / \mathrm{m}^{2}$
(c) $I_{0}=17.5 \mathrm{~W} / \mathrm{m}^{2}$
(d) $I_{0}=10 \mathrm{~W} / \mathrm{m}^{2} ; I_{p}=20 \mathrm{~W} / \mathrm{m}^{2}$

Ans. : (d)
Q34. Consider the following differential equation that describes the oscillations of a physical system:

$$
\alpha \frac{d^{2} y}{d t^{2}}+\beta \frac{d y}{d t}+\gamma y=0
$$

If $\alpha$ and $\beta$ are held fixed, and $\gamma$ is increased, then,
(a) The frequency of oscillations increases
(b) The oscillations decay faster
(c) The frequency of oscillations decreases
(d) The oscillations decay slower

Ans. : (a)
Q35. For the given circuit, identify the correct statement(s)
(a) $I_{0}=1 \mathrm{~mA}$
(b) $V_{0}=3 V$
(c) If $R_{L}$ is doubled, $I_{0}$ will change to 0.5 mA
(d) If $R_{L}$ is doubled, $V_{0}$ will change to 6 V

Ans. : (a), (b), (d)


Q36. A Carnot engine operates between two temperatures, $T_{L}=100 \mathrm{~K}$ and $T_{H}=150 \mathrm{~K}$. Each cycle of the engine lasts for 0.5 seconds during which the power delivered is $500 \mathrm{~J} /$ second . Let $Q_{H}$ be the corresponding heat absorbed by the engine and $Q_{L}$ be the heat lost. Identify the correct statement(s)
(a) $Q_{H}=750 \mathrm{~J}$
(b) $\frac{Q_{H}}{Q_{L}} \leq \frac{2}{3}$
(c) The change in entropy of the engine and the hot bath in a cycle is $5 \mathrm{~J} / \mathrm{K}$
(d) The change in entropy of the engine in 0.5 seconds is zero.

Ans. : (a), (c), (d)

Q37. A time independent conservative force $\vec{F}$ has the form, $\vec{F}=3 y \hat{i}+f(x, y) \hat{j}$. Its magnitude at $x=y=0$ is 8 . The allowed form(s) of $f(x, y)$ is (are)
(a) $3 x+8$
(b) $2 x+8(y-1)^{2}$
(c) $3 x+8 e^{-y^{2}}$
(d) $2 x+8 \cos y$

Ans. : (a), (c)
Q38. The figure shows the cross-section of hollow cylindrical tank, 2.2 m in diameter which is half filled with water (refractive index of 1.33). The space above the water is filled with a gas of unknown refractive index. A small laser moves along the bottom surface and aims a light beam towards the center (see figure). When the laser moves a distance of $S=1.09 \mathrm{~m}$ or beyond from the lowest point in the water, no light enters the gas. Identify the correct statement(s) (speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$ ).
(a) The refractive index of the gas is 1.05
(b) The time taken for the light beam to travel from the laser to the rim of the tank when $S<1.09 \mathrm{~m}$ is 8.9 ns
(c) The time taken for the light beam to travel from the laser to the rim of the tank when $S>1.09 \mathrm{~m}$ is 9.7 ns
(d) The critical angle for the water-gas interface is $56.77^{\circ}$

Ans. : (b), (c), (d)
Q39. Identify the correct statement(s) regarding nuclei
(a) The uncertainly in the momentum of a proton in a nucleus is roughly $10^{5}$ times the uncertainly in the momentum of the electron in the ground state of Hydrogen atom
(b) The volume of a nucleus grows linearly with the number of nucleons in it
(c) The energy of $\gamma$ rays due to de-excitation of nucleus can be of the order of MeV
(d) ${ }^{56} \mathrm{Fe}$ is the most stable nucleus

Ans. : (a), (b), (c), (d)
Q40. A particle of mass $m$ is in an infinite square well potential of length $L$. It is in a superposed state of the first two energy eigenstates, as given by $\psi(x)=\frac{1}{\sqrt{3}} \left\lvert\, \psi_{n=1}(x)+\sqrt{\frac{2}{3}} \psi_{n=2}(x)\right.$. Identify the correct statement(s). $h$ is Planck's constant.
(a) $\langle p\rangle=0$
(b) $\Delta p=\frac{\sqrt{3} h}{2 L}$
(c) $\langle E\rangle=\frac{3 h^{2}}{8 m L^{2}}$
(d) $\Delta x=0$

Ans. : (a), (b), (c)

## SECTION - C

## NUMERICAL ANSWER TYPE (NAT)

## Q41 - Q50 Carry One Mark Each

Q41. One of the roots of the equation, $z^{6}-3 z^{4}-16=0$ is given by $z_{1}=2$. The value of the product of the other five roots is $\qquad$
Ans. : -8
Q42. The following Zener diode voltage regulator circuit is used to obtain 20 V regulated output at load resistance $R_{L}$ from a 35 V dc power supply. Zener diodes are rated at 5 W and 10 V . The value of the resistance $R$ is $\qquad$ $\Omega$.


Ans. : 30
Q43. A small conducting square loop of side $l$ is placed inside a concentric large conducting square loop of side $L(L \gg l)$. The value of mutual inductance of the system is expressed as $\frac{n \mu_{0} I^{2}}{\pi L}$. The value of $n$ is $\qquad$ (Round off to two decimal places)

Ans.: 2.828
Q44. Consider $N_{1}$ number of ideal gas particles enclosed in a volume $V_{1}$. If the volume is changed to $V_{2}$ and the number of particles is reduced by half, the mean free path becomes four times of its initial value. The ratio $\frac{V_{1}}{V_{2}}$ is $\qquad$ (Round off to one decimal place).

Ans. : 0.5
Q45. A particle is moving with a velocity $0.8 c \hat{j}$ ( $c$ is the speed of light) in an inertial frame $S_{1}$. Frame $S_{2}$ is moving with a velocity $0.8 c \hat{i}$ with respect to $S_{1}$. Let $E_{1}$ and $E_{2}$ be the respective energies of the particle in the two frames. Then, $\frac{E_{2}}{E_{1}}$ is $\qquad$ (Round off to two decimal places).

Ans. : 1.66

Q46. At some temperature $T$, two metals $A$ and $B$, have Fermi energies $\epsilon_{A}$ and $\epsilon_{B}$, respectively. The free electron density of $A$ is 64 times that of $B$. The ratio $\frac{\epsilon_{A}}{\epsilon_{B}}$ is $\qquad$ .

Ans. : 16
Q47. A crystal has monoclinic structure, with lattice parameters, $a=5.14 \stackrel{0}{\mathrm{~A}}, b=5.20{ }_{\mathrm{A}}^{\mathrm{A}}$, $c=5.30 \AA$ and angle $\beta=99^{\circ}$. It undergoes a phase transition to tetragonal structure with lattice parameters, $a=5.09 \mathrm{~A}^{\circ}$ and $c=5.27 \mathrm{~A}^{\circ}$. The fractional change in the volume $\left|\frac{\Delta V}{V}\right|$ of the crystal due to this transition is $\qquad$ (Round off to two decimal places).

Ans. : 0.024
Q48. A laser beam shines along a block of transparent material of length 2.5 m . Part of the beam goes to the detector $D_{1}$ while the other part travels through the block and then hits the detector $D_{2}$. The time delay between the arrivals of the two light beams is inferred to be 6.25 ns . The speed of light $c=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The refractive index of the block is $\qquad$ (Round off to two decimal places).


Ans. : 1.73 to 1.77
Q49. An ideal blackbody at temperature $T$, emits radiation of energy density $u$. The corresponding value for a material at temperature $\frac{T}{2}$ is $\frac{u}{256}$. Its emissivity is $\qquad$ (Round off to three decimal places).
Ans. : 0.063
Q50. A particle with positive charge $10^{-3} \mathrm{C}$ and mass 0.2 kg is thrown upwards from the ground at an angle $45^{0}$ with the horizontal with a speed of $5 \mathrm{~m} / \mathrm{s}$. The projectile moves through a horizontal electric field of $10 \mathrm{~V} / \mathrm{m}$, which is in the same direction as the horizontal component of the initial velocity of the particle. The acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$. The range is
$\qquad$ $m$. (Round off to three decimal places).

Ans. : 2.51

## Q51 - Q60 Carry Two Marks Each.

Q51. Consider a hemispherical glass lens (refractive index is 1.5) having radius of curvature $R=12 \mathrm{~cm}$ for the curved surface. An incoming ray, parallel to the optical axis, is incident on the curved surface at a height $h=1 \mathrm{~cm}$ above the optical axis, as shown in the figure. The distance $d$ (from the flat surface of the lens) at which the ray crosses the optical axis is $\qquad$ cm (Round off to two decimal places).


Ans.: 16
Q52. Twenty non-interacting $\operatorname{spin} \frac{1}{2}$ particles are trapped in a three-dimensional simple harmonic oscillator potential of frequency $\omega$. The ground state energy of the system, in units of $\hbar \omega$, is $\qquad$ .

Ans. : 60
Q53. A thin film of alcohol is spread over a surface. When light from a tunable source is incident normally, the intensity of reflected light at the detector is maximum for $\lambda=640 \mathrm{~nm}$ and minimum for $\lambda=512 \mathrm{~nm}$. Taking the refractive index of alcohol to be 1.36 for both the given wavelengths, the minimum thickness of the film would be $\qquad$ $n m$ (Round off to two decimal places).

Ans. : 470.58
Q54. For the Boolean expression $Y=A B C+\bar{A} \bar{B} C+\bar{A} B \bar{C}+A \bar{B} \bar{C}$, the number of combinations for which the output $Y=1$ is $\qquad$ .

Ans.: 4

Q55. An $R C$ circuit is connected to two dc power supplies, as shown in the figure. With switch $S$ open, the capacitor is fully charged. $S$ is then closed at time $t=0$. The voltage across the capacitor at $t=2.4$ milliseconds is $\qquad$ $V$ (Round off to one decimal place).


Ans.: 18.824
Q56. A current $I$ is uniformly distributed across a long straight nonmagnetic wire $\left(\mu_{r}=1\right)$ of circular cross-section with radius $a$. Two points $P$ and $Q$ are at distances $\frac{a}{3}$ and $9 a$, respectively, from the axis of the wire. The ratio of the magnetic fields at points $P$ and $Q$ is
$\qquad$ .

Ans.: 3
Q57. A particle $A$ of mass $m$ is moving with a velocity $v \hat{i}$, and collides elastically with a particle $B$, of mass $2 m, B$ is initially at rest. After collision, $A$ moves with a velocity $v_{A} \hat{j}$. If $v_{B}$ is the final speed of $B$, then $v_{A}^{2}=k v_{B}^{2}$. The value of $k$ is $\qquad$ .

Ans. : 1
Q58. In an $X$ - ray diffraction experiment with $C u$ crystals having lattice parameter $3.61{ }^{\circ} \mathrm{A}, X-$ rays of wavelength of 0.090 nm are incident on the family of planes $\{110\}$. The highest order present in the diffraction pattern is $\qquad$ .

Ans.: 5

Q59. A parallel plate capacitor having plate area of $50 \mathrm{~cm}^{2}$ and separation of 0.1 mm is completely filled with a dielectric (dielectric constant $K=10$ ). The capacitor is connected to a $10 \mathrm{k} \Omega$ resistance and an alternating voltage $v=10 \sin (100 \pi t)$, as shown in the figure. The switch $S$ is initially open and then closed at $t=0$. The ratio of the displacement current in the capacitor, to the current in the resistance, at time $t=\frac{2}{\pi}$ seconds is $\qquad$ (Round off to three decimal places).


Ans.: 0.038
Q60. The wavelength of characteristic $K_{\alpha} X$ - ray photons from Mo (atomic number 42) is
$\qquad$ 0
(Speed of light is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$; Rydberg constant $R=1.09 \times 10^{7} / \mathrm{m}$ )
Ans. : 0.73

## Physics by fiziks

## An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

## Achievement $\&$ Hall of Fame

## Our Toppers in 2020-2022



Akash Naskar
IIT-JAM AIR-5
Jadavpur Univ. Kolkata


Siddhartha Paul IIT-JAM AIR - 22, TIFR AIR - 32 Jadavpur Univ. Kolkata


Keshav Aggarwal IIT-JAM AIR - 32, Delhi Technical Univ.


Vaishali
JRF AIR - 46, GATE AIR - 762 GJUST Haryana


Harsh Chaudhary IIT-JAM AIR-62 NIT, Kurukshetra


Ayush Kumar Shaw JEST AIR-91 Jadavpur Univ. Kolkata


Debosmita NET AIR-10 IIT Delhi


Akshita Agarwal
JRF AIR-24 HNB Garhwal Univ.


Amit Tyagi JRF AIR 35, GATE AIR - 417 CCSU Meerut


Tanu Sharma
IIT-JAM AIR - 50
JEST AIR 85,
MLNC, Delhi Univ.


Devender Kumar GATE AIR-63 Delhi University


Sagar Malik IIT-JAM AIR - 96, JEST AIR-211, NIT, SURAT


Dikhya Joshi
NET AIR-24
Techno India Univ. Kolkata


Apoorva Asthana IIT-JAM AIR - 39, AKTU


Rahul IIT-JAM AIR - 50 S.V.C. Delhi University


Santanu Singh IIT-JAM AIR-67 RKMRC, West Bengal


Abhishek T JRF AIR - 97, GATE AIR - 121 NIT, Kolkata


Vinay Kumar IIT JAM AIR - 26 JMI, Delhi


Aditi Sindhu IIT JAM AIR-41 ARSD, Delhi University


Sapan Kumar Sahoo JEST AIR - 50 NET AIR-124, GATE 478 Central Univ. of South Bihar


Shubhrakanta Panda JRF AIR-72 NIT Rourkela


Anu Sharma Anu Sharma
GATE AIR-100 Punjabi Univ. Patiala


Akshit Joon
Akshit Joon
Kuk, S.D College Panipat


Aditi
Aditi
NET AIR-27, GATE AIR-688 BHU Varanshi


Mani Shankar IIT JAM AIR-42 ARSD, Delhi University


Akash Rawat JRF AIR - 54 SVNIT, NIT


Monika Redhu NET AIR-73
Kurukshetra, Haryana


Seema Maurya JRF AIR-101 Guru Ghasidas Univ.


Akash Bhardwaj IIT-JAM AIR-16 Ramjas College, DU


Satyaki Manna GATE AIR-27 Jadavpur Univ. Kolkata


Ananya Bansal Ananya Bansa
NET AIR-43 Delhi University


Jaydeep Lohia JEST AIR-62 IIT-Bombay


Ayush Garg
JRF AIR-79
Rajasthan Technical Univ.



Ajay Pratap Singh Rana NET AIR - 45, GATE AIR - 640 IISER Thiruvananthpuram


Ekta JEST AIR-84


Jyoti
NET AIR 109, GATE AIR 515 Central Univ. of Punjab

## Physics by fiziks

## An Institute of NET-JRF, IIT-JAM, GATE, JEST, TIFR \& M.Sc Entrance in Physics \& Physical Sciences

## Achievement \& Hall of Fame

## Our Toppers in 2015-2019



Pargam Vashishtha M.Sc. from CCS Univ.


Hemanshu Dua
M.Sc. from IISER-Mohali



Manish Singh
JEST AIR-3
B.E. from D.T.U. Delhi


Sadhan Biswas M.Sc. from C.S.J.M. Univ.


Stav Haldar
IIT-JAM AIR-8 B.Sc. from BIT Mesra, Ranchi


Ruby Negi JEST AIR-15, IIT-JAM AIR-251 MLNC, DU


Atul Dubey M.Sc. from D.D.U. Gorakhpur Ph.D. IIT-Delhi


Gaurav Mukherjee IIT-JAM AIR-16
B.Sc. from BIT Mesra, Ranchi


Ekta Kumawat
IIT-JAM AIR-25
B.Sc. from Rajasthan Univ (IIT-D)

Neeru Kundu JRF AIR-33, GATE AIR-36 Kurukshetra University .
 B.Sc. from M.C. College, Bangalor
Int. Ph.D. IISc. Bangalore


Radhika Prasad
IIT-JAM AIR-35
B.Sc. from DU


Deepak Sharma JRF AIR-57, GATE AIR-290 Kurukshetra University.


Banashree Baishya JRF AIR-24, GATE AIR-177 Gauhati University


Vinay Vaibhav
IIT-JAM AIR-36
B.Sc. from Central Univ. of Jharkhand, Int. Ph.D. CM
 JEST AIR-45, IIT-JAM AIR-154 Agra College, DBRA Univ.


Rashid Ali
GATE AIR-9, JRF AIR-17
SSVPG College, Meerut Univ


Abhishek Singh IIT-JAM AIR-9, JEST AIR-117 IIT-JAM AIR-11, JEST AIR-141 MLNC, DU


Kunal Vyas SIMSR, Mumbai


Ankit Dulat IIT-JAM AIR-16, JEST AIR-20 B.Sc. from DU


Manjari Jain GATE AIR-26, JRF AIR-93 M.Sc. from Dr. R.M.L.A Univ.


Mohit Mehta YMCA, Faridabad


Surya Kant Verma
JRF AIR-17 M.Sc. from Rajasthan Univ M.Sc. from A.M.U. Aligarh


Akansha Gupta M.Sc. from Rajasthan Univ.


Priyanka Garg JRF AIR-47 M.Sc. from P.U.


Mukaddar Shaikh Ph.D. IIT-Kharagpur


Dhananjay Singh IIT-JAM AIR-49 IIT Dhanbad


JEST Yash Chugh Yogesh Arya $\begin{array}{cc}\text { JEST AIR-82, IIT-JAM AIR-595 } \\ \text { IGNOU } & \begin{array}{c}\text { JEST AIR-82, GATE AIR-357 } \\ \text { MNIT, Jaipur }\end{array}\end{array}$


Ramesh Kumar JRF AIR-88
G.J.U.S.T, Hisar, Haryana


Amandeep Kaur JRF AIR-94 IIT, Guwahati


Shashank Kumar JRF AIR-99, GATE AIR-89 JEST AIR-107
IIT-Dhanbad


Shinjini Das
GATE AIR - 99
SCC, Calcutta University


Amal Kishor CSIR-NET AIR 100
NIT, NIT, Durgapur


Rajesh Kumar Raul
CSIR-NET AIR 100
Annamalai University


