fiziks t! ! ! k

IIT-JAM-2012(PHYSICS)

IMPORTAN NOTE FOR CANDIDTES

- Attempt ALL 25 questions.
- Questions 1-15(objective questions) carry six marks each and questions 1625 (subjective questions) carry twenty one marks each.

Q1. Given a function of both position x and time t, the value of $\frac{\partial \dot{f}}{\partial \dot{x}}$ (where $\dot{f}=\frac{d f(x, t)}{d t}, \dot{x}=\frac{d x}{d t}$) is
(a) $\frac{\partial^{2} f}{\partial x^{2}}$
(b) $\frac{\partial f}{\partial x}$
(c) $\frac{\dot{f}}{\dot{x}}$
(d) $\frac{d f}{d x}$

Q2. If \vec{F} is a constant vector and \vec{r} is the position vector then $\vec{\nabla}(\vec{F} \cdot \vec{r})$ would be
(a) $(\vec{\nabla} \cdot \vec{r}) \vec{F}$
(b) \vec{F}
(c) $(\vec{\nabla} \cdot \vec{F}) \vec{r}$
(d) $|\vec{r}| \vec{F}$

Q3. Three masses $m, 2 m$ and $3 m$ are moving in $x-y$ plane with speeds $3 u, 2 u$ and u, respectively, as shown in the figure. The three masses collide at the same time at P and stick together. The velocity of the resulting mass would be

(a) $\frac{u}{12}(\hat{x}+\sqrt{3} \hat{y})$
(b) $\frac{u}{12}(\hat{x}-\sqrt{3} \hat{y})$
(c) $\frac{u}{12}(-\hat{x}+\sqrt{3} \hat{y})$
(d) $\frac{u}{12}(-\hat{x}-\sqrt{3} \hat{y})$
fiziks
t! ! ! k

Q4. The figure shows a thin square sheet of metal of uniform density along with possible choices for a set of principal axes (indicated by dashed lines) of the moment of inertia, lying in the plane of the sheet. The correct choice(s) for the principal axes would be

(a) p, q, and r
(b) p and r
(c) p and q
(d) p only

Q5. A lightly damped harmonic oscillator loses energy at the rate of 1% per minute. The decrease in amplitude of the oscillator per minute will be closest to
(a) 0.5%
(b) 1%
(c) 1.5%
(d) 2%

Q6. A parallel plate air-gap capacitor is made up of two plates of area $10 \mathrm{~cm}^{2}$ each kept at a distance of 0.88 mm . A sine wave of amplitude 10 V and frequency 50 Hz is applied across the capacitor as shown in the figure. The amplitude of the displacement current density (in $\mathrm{mA} / \mathrm{m}^{2}$) between the plates will be closest to

(a) 0.03
(b) 0.30
(c) 3.00 s
(d) 30.00

Q7. A tiny dust particle of mass $1.4 \times 10^{-11} \mathrm{~kg}$ is floating in air at 300 K . Ignoring gravity, its $r m s$ speed (in $\mu \mathrm{m} / \mathrm{s}$) due to random collisions with air molecules will be closest to
(a) 0.3
(b) 3
(c) 30
(d) 300

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks
t! ! ! k

Q8. When the temperature of a blackbody is doubled, the maximum value of its spectral energy density, with respect to that at initial temperature, would become
(a) $\frac{1}{16}$ times
(b) 8 times
(c) 16 times
(d) 32 times

Q9. Light takes 4 hours to cover the distance from Sun to Neptune. If you travel in a spaceship at a speed $0.99 c$ (where c is the speed of light in vacuum), the time (in minutes) required to cover the same distance measured with a clock on the spaceship will be approximately
(a) 34
(b) 56
(c) 85
(d) 144

Q10. ${ }_{27}^{60} \mathrm{Co}$ is a radioactive nucleus of half-life $2 \ln 2 \times 10^{8} s$. The activity of 10 g of ${ }_{27}^{60} \mathrm{Co}$ in disintegrations per second is
(a) $\frac{1}{5} \times 10^{10}$
(b) 5×10^{10}
(c) $\frac{1}{5} \times 10^{14}$
(d) 5×10^{14}

Q11. An X-ray beam of wavelength $1.54 \AA$ is diffracted from the (110) planes of a solid with a cubic lattice of lattice constant $3.08 \AA$. The first-order Bragg diffraction occurs at
(a) $\sin ^{-1}\left(\frac{1}{4}\right)$
(b) $\sin ^{-1}\left(\frac{1}{2 \sqrt{2}}\right)$
(c) $\sin ^{-1}\left(\frac{1}{2}\right)$
(d) $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$

Q12. The Boolean expression $P+\bar{P} Q$, where P and Q are the inputs to a circuit, represents the following logic gate
(a) AND
(b) NAND
(c) NOT
(d) OR
fiziks

Q13. Group I contains x - and y-components of the electric field and Group II contains the type of polarization of light.

Group I

P. $\quad E_{x}=\frac{E_{0}}{\sqrt{2}} \cos (\omega t+k z)$
$E_{y}=E_{0} \sin (\omega t+k z)$
Q. $\quad \begin{aligned} & E_{x}=E_{0} \sin (\omega t+k z) \\ & E_{y}=E_{0} \cos (\omega t+k z)\end{aligned}$
R. $\quad \begin{aligned} & E_{x}=E_{1} \sin (\omega t+k z) \\ & E_{y}=E_{2} \sin (\omega t+k z)\end{aligned}$
S. $\quad \begin{aligned} & E_{x}=E_{0} \sin (\omega t+k z) \\ & E_{y}=E_{0} \sin \left(\omega t+k z+\frac{\pi}{4}\right)\end{aligned}$

Group II

1. Linearly Polarized
2. Circularly Polarized
3. Unpolarized
4. Elliptically Polarized

The correct set of matches is
(a) $P \rightarrow 4 ; Q \rightarrow 2 ; R \rightarrow 4 ; S \rightarrow 1$
(b) $P \rightarrow 1 ; Q \rightarrow 3 ; R \rightarrow 1 ; S \rightarrow 4$
(c) $P \rightarrow 4 ; Q \rightarrow 2 ; R \rightarrow 1 ; S \rightarrow 4$
(d) $P \rightarrow 3 ; Q \rightarrow 1 ; R \rightarrow 3 ; S \rightarrow 2$

Q14. For a liquid to vapour phase transition at $T_{t r}$, which of the following plots between specific Gibbs free energy g and temperature T is correct?
(a)

(b)

(c)

(d)

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks

fiziks

Forum for CSIR-UGC JRF/ NET, GATE, IIT-JAM, GRE in PHYSICAL SCIENCES

Q15. A segment of a circular wire of radius R , extending from $\theta=0$ to $\pi / 2$, carries a constant linear charge density λ. The electric field at origin O is
(a) $\frac{\lambda}{4 \pi \varepsilon_{0} R}(-\hat{x}-\hat{y})$
(b) $\frac{\lambda}{4 \pi \varepsilon_{0} R}\left(-\frac{1}{\sqrt{2}} \hat{x}-\frac{1}{\sqrt{2}} \hat{y}\right)$
(c) $\frac{\lambda}{4 \pi \varepsilon_{0} R}\left(-\frac{1}{2} \hat{x}-\frac{1}{2} \hat{y}\right)$
(d) 0

SUBJECTIVE OUESTIONS

Q. 16 The P - V diagram below represents an ideal monatomic gas cycle for 1 mole of a gas. In terms of the gas constant R, calculate the temperatures at the points $\mathrm{J}, \mathrm{K}, \mathrm{L}$ and M . Also calculate the heat rejected and heat absorbed during the cycle, and the efficiency of the cycle.

Q. 172 kg of a liquid (specific heat $=2000 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~kg}^{-1}$, independent of temperature) is heated from 200 K to 400 K by either of the following two processes P_{1} and P_{2} :
P_{1} : bringing it in contact with a reservoir at 400 K .
P_{2} : bringing it first in contact with a reservoir at 300 K till equilibrium is reached, and then bringing it in contact with another reservoir at 400 K .
Calculate the change in the entropy of the liquid and that of the universe in processes P_{1} and P_{2}. Neglect any change in volume of the liquid.
fiziks
Q. 18 (a) Two concentric, conducting spherical shells of radii R_{1} and $R_{2}\left(R_{1}<R_{2}\right)$ are maintained at potentials V_{1} and V_{2}, respectively. Find the potential and electric field in the region $R_{1}<r<R_{2}$.
(b) A polarized dielectric cube of side l is kept on the $x-y$ plane as shown. If the polarization in the cube is $\vec{P}=k x \hat{x}$, where k is a positive constant, then find all the bound surface charge densities and volume charge density.

Q. 19 A water cannon starts shooting a jet of water horizontally, at $t=0$, into a heavy trolley of mass M placed on a horizontal ground. The nozzle diameter of the water cannon is d, the density of water is ρ, and the speed of water coming out of the nozzle is u. Find the speed of the trolley as a function of time. Assume that all the water from the jet is collected in the trolley. Neglect all frictional losses.

Q. 20 A long straight solenoid of radius R and n turns per unit length carries a current $I=\alpha t$, where α is a constant. t is time and remains finite. The axis of the solenoid is along the z-axis. Find the magnetic field, electric field and the Poynting vector inside the solenoid. Show these vectors at some instant t_{1} at any point (i) on the axis of the solenoid, and (ii) at a distance $r(<R)$ from the axis.

fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

fiziks
Q. 21 In the operational amplifier circuit shown below, input voltages $V_{1}=\frac{2}{3} V$ and $V_{2}=\frac{1}{2} V$ are applied.

(a) Determine the current flowing through resistance R_{4} and the output voltage V_{0}.
(b) In the above circuit, if V_{1} is grounded and square pulses of peak voltage 1 V and frequency 100 Hz are applied at V_{2}, determine the voltage and phase change of the output pulses.
Q. 22 A particle of mass m is confined in a potential-box of sides L_{x}, L_{y}, and L_{z}, as shown in the figure. By solving the Schrödinger equation of the particle, find its eigenfunctions and energy eigenvalues.

Q. 23 A particle of mass m and charge q moves in the presence of a time-independent magnetic field $\vec{B}(\vec{r})$. Set up Newton's equation of motion for the particle.

Since for a magnetic field $\vec{\nabla} \cdot \vec{B}=0$, one can write $\vec{B}=\vec{\nabla} \times \vec{A}$, where \vec{A} is a function of position. Calculate $\frac{d \vec{A}}{d t}$ as seen by the moving particle. Show that $\frac{d}{d t}(\vec{p}+q \vec{A})$, where \vec{p} is the momentum of the particle, can be written as q times the gradient of a function.
> fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)
fiziks
t!J!kz
Q. 24 Consider a periodic function $f(x)$, with periodicity 2π,

$$
f(x)= \begin{cases}c & 0 \leq x<\pi \\ 0 & \pi \leq x<2 \pi\end{cases}
$$

where c is a constant.
(a) Expand $f(x)$ in a Fourier series.
(b) From the result obtained in (a), show that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\ldots \ldots
$$

Q. 25 Two orthogonally polarized beams (each of wavelength $0.5 \mu \mathrm{~m}$ and with polarization marked in the figure) are incident on a two-prism assembly and emerge along x-direction, as shown. The prisms are of identical material and n_{o} and n_{e} are the refractive indices of the o-ray and e-ray, respectively. Use $\sin \phi=\frac{\sin \theta}{3}$, and $n_{o}=\frac{\sqrt{3}+1}{4}$.

(a) Find the value of θ and n_{e}.
(b) If the right hand side prism starts sliding down with the vertical component of the velocity $u_{y}=1 \mu \mathrm{~m} / \mathrm{s}$, what would be the minimum time after which the state of polarization of the emergent beam would repeat itself?
> fiziks c/ o Anand Institute of mathematics, 28-B/ 6 Jia Sarai Near IIT, Hauz Khas, New Delhi, PIN- 110016 (INDIA)

