

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(l) Einstein Relationship

Since both diffusion and mobility are statistical thermodynamic phenomena, D and μ are not independent. The relationship between them is given by

$$\frac{D_p}{\mu_p} = \frac{D_n}{\mu_n} = V_T$$
 where V_T is the 'Volt-equivalent of temperature'.

$$V_T = \frac{kT}{q} = \frac{T}{11,600}V$$

 $k \to \text{Boltzmann}$ constant in electron volts per degree Kelvin At room temperature $T=300^0~K$, $V_T=0.026~V~\Rightarrow \mu=39D$

Total Current in a Semiconductor

It is possible for both a potential gradient and a concentration gradient to exist simultaneously within a semiconductor. In such a situation, the total hole current is the sum of the drift current and the diffusion current, $J_p = q\mu_p pE - qD_p \frac{dp}{dx}$

Similarly the net electron current is: $J_n = q\mu_n nE + qD_n \frac{dn}{dx}$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com