# 11.6 Convergence Tests

#### 1210. The Comparison Test

Let  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  be series such that  $0 < a_n \le b_n$  for all n.

- If  $\sum_{n=1}^{\infty} b_n$  is convergent then  $\sum_{n=1}^{\infty} a_n$  is also convergent.
- If  $\sum_{n=1}^{\infty} a_n$  is divergent then  $\sum_{n=1}^{\infty} b_n$  is also divergent.

### 1211. The Limit Comparison Test

Let  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  be series such that  $a_n$  and  $b_n$  are positive for all n.

- If  $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < \infty$  then  $\sum_{n=1}^{\infty} a_n$  and  $\sum_{n=1}^{\infty} b_n$  are either both convergent or both divergent.
- If  $\lim_{n\to\infty} \frac{a_n}{b_n} = 0$  then  $\sum_{n=1}^{\infty} b_n$  convergent implies that  $\sum_{n=1}^{\infty} a_n$  is also convergent.

## Downloaded from Physicsbyfiziks.com

**CHAPTER 11. SERIES** 

**1212.** p-series

p-series  $\sum_{n=1}^{\infty} \frac{1}{n^p}$  converges for p > 1 and diverges for 0 .

1213. The Integral Test

Let f(x) be a function which is continuous, positive, and decreasing for all  $x \ge 1$ . The series

$$\sum_{n=1}^{\infty} f(n) = f(1) + f(2) + f(3) + \dots + f(n) + \dots$$

converges if  $\int_{1}^{\infty} f(x)dx$  converges, and diverges if

$$\int_{1}^{n} f(x) dx \to \infty \text{ as } n \to \infty.$$

### 1214. The Ratio Test

Let  $\sum_{n=1}^{\infty} a_n$  be a series with positive terms.

- If  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} < 1$  then  $\sum_{n=1}^{\infty} a_n$  is convergent.
- If  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} > 1$  then  $\sum_{n=1}^{\infty} a_n$  is divergent.
- If  $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1$  then  $\sum_{n=1}^{\infty} a_n$  may converge or diverge and the ratio test is inconclusive; some other tests must be used.

### 1215. The Root Test

Let  $\sum_{n=1}^{\infty} a_n$  be a series with positive terms.

- If  $\lim_{n\to\infty} \sqrt[n]{a_n} < 1$  then  $\sum_{n=1}^{\infty} a_n$  is convergent.
- If  $\lim_{n\to\infty} \sqrt[n]{a_n} > 1$  then  $\sum_{n=1}^{\infty} a_n$  is divergent.
- If  $\lim_{n\to\infty} \sqrt[n]{a_n} = 1$  then  $\sum_{n=1}^{\infty} a_n$  may converge or diverge, but no conclusion can be drawn from this test.