5.4 Operations with Matrices

- **532.** Two matrices A and B are equal if, and only if, they are both of the same shape $m \times n$ and corresponding elements are equal.
- **533.** Two matrices A and B can be added (or subtracted) of, and only if, they have the same shape $m \times n$. If

$$\mathbf{A} = \begin{bmatrix} \mathbf{a}_{11} & \mathbf{a}_{12} & \dots & \mathbf{a}_{1n} \\ \mathbf{a}_{21} & \mathbf{a}_{22} & \dots & \mathbf{a}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{a}_{m1} & \mathbf{a}_{m2} & \dots & \mathbf{a}_{mn} \end{bmatrix},$$

$$\mathbf{B} = \begin{bmatrix} \mathbf{b}_{11} & \mathbf{b}_{12} & \dots & \mathbf{b}_{1n} \\ \mathbf{b}_{21} & \mathbf{b}_{22} & \dots & \mathbf{b}_{2n} \\ \vdots & \vdots & & \vdots \\ \mathbf{b}_{m1} & \mathbf{b}_{m2} & \dots & \mathbf{b}_{mn} \end{bmatrix},$$

then

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \dots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \dots & a_{2n} + b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \dots & a_{mn} + b_{mn} \end{bmatrix}.$$

Downloaded from Physicsbyfiziks.com

CHAPTER 5. MATRICES AND DETERMINANTS

534. If k is a scalar, and $A = [a_{ij}]$ is a matrix, then

$$kA = \begin{bmatrix} ka_{11} & ka_{12} & \dots & ka_{1n} \\ ka_{21} & ka_{22} & \dots & ka_{2n} \\ \vdots & \vdots & & \vdots \\ ka_{m1} & ka_{m2} & \dots & ka_{mn} \end{bmatrix}.$$

535. Multiplication of Two Matrices

Two matrices can be multiplied together only when the number of columns in the first is equal to the number of rows in the second.

If
$$A = \begin{bmatrix} a_{1i} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

$$B = \begin{bmatrix} b_{1i} & b_{12} & \dots & b_{1k} \\ b_{21} & b_{22} & \dots & b_{2k} \\ \vdots & \vdots & & \vdots \\ b_{n1} & b_{n2} & \dots & b_{nk} \end{bmatrix},$$

Downloaded from Physicsbyfiziks.com

CHAPTER 5. MATRICES AND DETERMINANTS

then

$$AB = C = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1k} \\ c_{21} & c_{22} & \dots & c_{2k} \\ \vdots & \vdots & & \vdots \\ b_{m1} & c_{m2} & \dots & c_{mk} \end{bmatrix},$$

where

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + ... + a_{in}b_{nj} = \sum_{\lambda=1}^{n} a_{i\lambda}b_{\lambda j}$$

(i = 1, 2, ..., m; j = 1, 2, ..., k).

Thus if

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix}, B = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix},$$

then

$$AB = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} a_{11}b_1 & a_{12}b_2 & a_{13}b_3 \\ a_{21}b_1 & a_{22}b_2 & a_{23}b_3 \end{bmatrix}.$$

536. Transpose of a Matrix

If the rows and columns of a matrix are interchanged, then the new matrix is called the transpose of the original matrix. If A is the original matrix, its transpose is denoted A^T or \widetilde{A} .

- **537.** The matrix A is orthogonal if $AA^{T} = I$.
- **538.** If the matrix product AB is defined, then $(AB)^T = B^T A^T$.

Downloaded from Physicsbyfiziks.com

CHAPTER 5. MATRICES AND DETERMINANTS

539. Adjoint of Matrix

If A is a square $n \times n$ matrix, its adjoint, denoted by adj A, is the transpose of the matrix of cofactors C_{ij} of A:

$$\operatorname{adj} A = \left[C_{ij}\right]^{T}.$$

540. Trace of a Matrix

If A is a square $n \times n$ matrix, its trace, denoted by tr A, is defined to be the sum of the terms on the leading diagonal: $\operatorname{tr} A = a_{11} + a_{22} + \ldots + a_{nn}$.

541. Inverse of a Matrix

If A is a square $n \times n$ matrix with a nonsingular determinant det A, then its inverse A^{-1} is given by

$$A^{-1} = \frac{\text{adj } A}{\text{det } A}.$$

542. If the matrix product AB is defined, then

$$(AB)^{-1} = B^{-1}A^{-1}$$
.

543. If A is a square $n \times n$ matrix, the eigenvectors X satisfy the equation

$$AX = \bar{\lambda}X$$
,

while the eigenvalues λ satisfy the characteristic equation $|A - \lambda I| = 0$.