fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(d) Laplace's and Poisson Equations

Since
$$\vec{E} = -\vec{\nabla}V$$
 and $\vec{\nabla}.\vec{E} = \frac{\rho}{\varepsilon_0} \implies \nabla^2 V = -\frac{\rho}{\varepsilon_0}$

This is known as **Poisson's equation**.

In regions where there is no charge, so that $\rho = 0$, Poisson's equation reduces to Laplace's equation,

$$\nabla^2 V = 0$$
.

Example: Potential in a region of space is given by, $\phi = \phi_0 e^{-ax^2}$ where ϕ_0 and a is constant. Then find the charge density in this region.

Solution:
$$\nabla^2 \phi = -\frac{\rho}{\varepsilon_0} \Rightarrow \rho = -\varepsilon_0 \left(\nabla^2 \phi \right) = -\varepsilon_0 \frac{\partial}{\partial x} \left[\phi_0 e^{-ax^2} \times -2ax \right]$$

$$\Rightarrow \rho = 2a\phi_0\varepsilon_0 \frac{\partial}{\partial x} \left[xe^{-ax^2} \right] = 2a\phi_0\varepsilon_0 \left[e^{-ax^2} + xe^{-ax^2} \left(-2ax \right) \right]$$

$$\Rightarrow \rho = 2a\phi_0 \varepsilon_0 e^{-ax^2} \left[1 - 2ax^2 \right]$$