

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(i) Gauss Law in Presence of Dielectrics (The Electric Displacement)

Within the dielectric, the total charge density can be written as $\rho = \rho_b + \rho_f$ where ρ_b is volume bound charge ρ_f free charge density.

From Gauss Law;
$$\overrightarrow{\nabla}.\overrightarrow{E} = \frac{\rho}{\varepsilon_0} \Rightarrow \varepsilon_0 (\overrightarrow{\nabla}.\overrightarrow{E}) = (\rho_b + \rho_f) = -\overrightarrow{\nabla}.\overrightarrow{P} + \rho_f$$

where \vec{E} is now the **total field**, not just that portion generated by polarization.

$$\Rightarrow \overrightarrow{\nabla} \cdot \left(\varepsilon_0 \overrightarrow{E} + \overrightarrow{P} \right) = \rho_f$$

 $\Rightarrow \vec{\nabla} \cdot \vec{D} = \rho_f$ where $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$ is known as the **electric displacement.**

Thus Gauss' law reads, $\vec{\nabla}.\vec{D}=\rho_f$ or, in integral form $\oint \vec{D}.\vec{d}\,\vec{a}=Q_{f_{enc}}$, where $Q_{f_{enc}}$ denotes the total free charge enclosed in the volume.