

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(j) Linear Dielectrics (Susceptibility, Permittivity, Dielectric Constant)

For any substances, the polarization is proportional to the field provided \vec{E} is not too strong:

$$\vec{P} \propto \vec{E} \Rightarrow \vec{P} = \varepsilon_0 \chi_e \vec{E}$$

(Materials that obey this relation are called linear dielectrics)

The constant of proportionality, χ_e is called the *electric susceptibility* of the medium. The value of χ_e depends on the microscopic structure of the substance and also on external conditions such as temperature.

In linear media we have

$$\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} + \overrightarrow{P} = \varepsilon_0 \overrightarrow{E} + \varepsilon_0 \chi_e \overrightarrow{E} = \varepsilon_0 \overrightarrow{E} (1 + \chi_e) = \varepsilon \overrightarrow{E}, \quad where \quad \varepsilon = \varepsilon_0 (1 + \chi_e)$$

This new constant ε is called the permittivity of the material.

Also $\varepsilon_r = \frac{\varepsilon}{\varepsilon_0} = (1 + \chi_e)$ is called *relative permittivity* or *dielectric constant*, of the material.

Energy in Dielectric System

$$W = \frac{1}{2} \int_{all \, space} (\overrightarrow{D} \cdot \overrightarrow{E}) d\tau \quad \text{where } \overrightarrow{D} = \varepsilon \overrightarrow{E}$$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com