

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(a) Basic Concepts, Matrix Addition, Scalar Multiplication

Basic Concepts

A matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in *rows* and *columns*. The individual items in a matrix are called its *elements* or *entries*. Thus a $m \times n$ matrix is of the form

$$A = \begin{bmatrix} a_{ij} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & a_{ij} & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

In matrix, A has m rows and n column. a_{ij} is the element of i^{th} row and j^{th} column.

If number of row and number of column in matrix is equal (m=n), then matrix is said to be square matrix. Then its diagonal containing the entries $a_{11}, a_{22}, ..., a_{nn}$ is called main diagonal or principal diagonal of A.

A matrix that is not diagonal is called a **rectangular matrix**.

Transposition

A transpose A^T of a $m \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ is the $n \times m$ matrix that has the first row of A as its first column, the second row of A as its second column, and so on. Thus, the transpose of A is

$$A^{T} = \begin{bmatrix} a_{ji} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Symmetric matrices and skew-symmetric matrices

Matrices whose transpose equals the matrix are called symmetric matrix. Matrices whose transpose equals the minus of matrix are called anti-symmetric matrix

 $A^{T} = A$ (symmetric matrix) and $A^{T} = -A$ (anti-symmetric matrix)

Equality of Matrices

Two matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ are equal, written A = B, if and only if they have the same size and the corresponding entries are equal, that is $a_{11} = b_{11}$, $a_{12} = b_{12}$ and so on.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Matrix Addition

Addition is defined only for matrices $A = [a_{ij}]$ and $B = [b_{ij}]$ of the same size; their sum written A + B, is then obtained by adding the corresponding entries. Matrices of different sizes cannot be added

If
$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
 and $B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mn} \end{bmatrix}$
Then $A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$

Scalar Multiplication

The product of any $m \times n$ matrix $A = \begin{bmatrix} a_{ij} \end{bmatrix}$ and any scalar λ written λA is the $m \times n$ matrix $\lambda A = \begin{bmatrix} \lambda a_{ij} \end{bmatrix}$ obtained by multiplying each entry in A by λ . Thus

$$\lambda A = \begin{bmatrix} \lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1n} \\ \lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda a_{m1} & \lambda a_{m2} & \cdots & \lambda a_{mn} \end{bmatrix}$$

Here (-1)A is simply written -A and is called the negative of A. Similarly, (-k)A is simply written -kA. Also, A+(-B) is written A-B and is called the difference of A and B (which must have the same size).

For matrices of the same size $m \times n$, we obtain for addition

- (i) A+B=B+A
- (ii) (A+B)+C = A+(B+C)
- (iii) A + 0 = A
- (iv) A + (-A) = 0 here 0 denote the zero matrix of size $m \times n$.

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

And for scalar multiplication

- (i) $\lambda (A+B) = \lambda A + \lambda B$
- (ii) $(\lambda + k)A = \lambda A + kA$
- (iii) $\lambda(kA) = (\lambda k)A$
- (iv) 1A = A

Transposition of sum can be done term by term $(A+B)^T = A^T + B^T$

And for scalar multiplication we have $(\lambda A)^T = \lambda A^T$