## (a) Basic Concepts, Matrix Addition, Scalar Multiplication

## Basic Concepts

A matrix (plural matrices) is a rectangular array of numbers, symbols, or expressions, arranged in rows and columns. The individual items in a matrix are called its elements or entries. Thus a $m \times n$ matrix is of the form

$$
A=\left[a_{i j}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & a_{i j} & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]
$$

In matrix, $A$ has $m$ rows and $n$ column. $a_{i j}$ is the element of $i^{\text {th }}$ row and $j^{\text {th }}$ column.
If number of row and number of column in matrix is equal $(m=n)$, then matrix is said to be square matrix. Then its diagonal containing the entries $a_{11}, a_{22}, \ldots, a_{n n}$ is called main diagonal or principal diagonal of $A$.
A matrix that is not diagonal is called a rectangular matrix.

## Transposition

A transpose $A^{T}$ of a $m \times n$ matrix $A=\left[a_{i j}\right]$ is the $n \times m$ matrix that has the first row of $A$ as its first column, the second row of $A$ as its second column, and so on. Thus, the transpose of $A$ is

$$
A^{T}=\left[a_{j i}\right]=\left[\begin{array}{cccc}
a_{11} & a_{21} & \cdots & a_{m 1} \\
a_{12} & a_{22} & \cdots & a_{m 2} \\
\vdots & \vdots & & \vdots \\
a_{1 n} & a_{2 n} & \cdots & a_{m n}
\end{array}\right]
$$

## Symmetric matrices and skew-symmetric matrices

Matrices whose transpose equals the matrix are called symmetric matrix. Matrices whose transpose equals the minus of matrix are called anti-symmetric matrix

$$
A^{T}=A \text { (symmetric matrix) and } A^{T}=-A \text { (anti-symmetric matrix) }
$$

## Equality of Matrices

Two matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ are equal, written $A=B$, if and only if they have the same size and the corresponding entries are equal, that is $a_{11}=b_{11}, a_{12}=b_{12}$ and so on.

## Matrix Addition

Addition is defined only for matrices $A=\left[a_{i j}\right]$ and $B=\left[b_{i j}\right]$ of the same size; their sum written $A+B$, is then obtained by adding the corresponding entries. Matrices of different sizes cannot be added

If $A=\left[\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1} & a_{m 2} & \cdots & a_{m n}\end{array}\right]$ and $B=\left[\begin{array}{cccc}b_{11} & b_{12} & \cdots & b_{1 n} \\ b_{21} & b_{22} & \cdots & b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m 1} & b_{m 2} & \cdots & b_{m n}\end{array}\right]$
Then $A+B=\left[\begin{array}{cccc}a_{11}+b_{11} & a_{12}+b_{12} & \cdots & a_{1 n}+b_{1 n} \\ a_{21}+b_{21} & a_{22}+b_{22} & \cdots & a_{2 n}+b_{2 n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m 1}+b_{m 1} & a_{m 2}+b_{m 2} & \cdots & a_{m n}+b_{m n}\end{array}\right]$

## Scalar Multiplication

The product of any $m \times n$ matrix $A=\left[a_{i j}\right]$ and any scalar $\lambda$ written $\lambda A$ is the $m \times n$ matrix $\lambda A=\left[\lambda a_{i j}\right]$ obtained by multiplying each entry in $A$ by $\lambda$. Thus

$$
\lambda A=\left[\begin{array}{cccc}
\lambda a_{11} & \lambda a_{12} & \cdots & \lambda a_{1 n} \\
\lambda a_{21} & \lambda a_{22} & \cdots & \lambda a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda a_{m 1} & \lambda a_{m 2} & \cdots & \lambda a_{m n}
\end{array}\right]
$$

Here $(-1) A$ is simply written $-A$ and is called the negative of $A$. Similarly, $(-k) A$ is simply written $-k A$. Also, $A+(-B)$ is written $A-B$ and is called the difference of $A$ and $B$ (which must have the same size).
For matrices of the same size $m \times n$, we obtain for addition
(i) $A+B=B+A$
(ii) $(A+B)+C=A+(B+C)$
(iii) $A+0=A$
(iv) $A+(-A)=0$ here 0 denote the zero matrix of size $m \times n$.

And for scalar multiplication
(i) $\lambda(A+B)=\lambda A+\lambda B$
(ii) $(\lambda+k) A=\lambda A+k A$
(iii) $\lambda(k A)=(\lambda k) A$
(iv) $1 A=A$

Transposition of sum can be done term by term $(A+B)^{T}=A^{T}+B^{T}$
And for scalar multiplication we have $(\lambda A)^{T}=\lambda A^{T}$

