(d) Inverse of a Matrix

The inverse of a $n \times n$ matrix $A=\left[a_{i j}\right]$ is denoted by A^{-1} and is an $n \times n$ matrix such that

$$
A A^{-1}=A^{-1} A=I
$$

where I is the $n \times n$ unit matrix.

Note:

(i) If A has inverse, then A is called a nonsingular matrix.
(ii) If A has no inverse, then A is called a singular matrix.
(iii) If A has an inverse, the inverse is unique.

The inverse of a nonsingular $n \times n$ matrix $A=\left[a_{i j}\right]$ is given by

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[A_{i j}\right]^{T}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cccc}
A_{11} & A_{21} & \cdots & A_{n 1} \\
A_{12} & A_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
A_{1 n} & A_{2 n} & \cdots & A_{n n}
\end{array}\right]
$$

where $A_{i j}$ is the cofactor of $a_{i j}$ in $\operatorname{det} A$. Note well that in A^{-1}, the cofactor $A_{i j}$ occupies the same place as $a_{j i}$ does in A.

Cofactor of $a_{i j}$

A determinant of order n is a scalar associated with an $n \times n$ matrix $A=\left[a_{i j}\right]$, which is written

$$
D=\operatorname{det} A=\left|\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right|
$$

and is defined for $n=1$ by $D=a_{11}$
and is defined for $n \geq 2$ by

$$
D=a_{i 1} C_{i 1}+a_{i 2} C_{i 2}+\ldots .+a_{i n} C_{i n}(i=1,2, \ldots \ldots ., \text {, or } n)
$$

where $C_{i j}=(-1)^{i+j} M_{i j}$ and $M_{i j}$ is a determinant of order ($n-1$), namely, the determinant of the submatrix of A obtained from A by deleting the row and column of the entry $a_{i j}$.
$M_{i j}$ is called the minor of $a_{i j}$ in D and $C_{i j}$ is the cofactor of $a_{i j}$ in D.
Example: Let $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, then cofactor of A is $\left[A_{i j}\right]=\left[\begin{array}{cc}a_{22} & -a_{21} \\ -a_{12} & a_{11}\end{array}\right]$.
$\Rightarrow\left[A_{i j}\right]^{T}=\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]$.
Hence, $A^{-1}=\frac{1}{\operatorname{det} A}\left[A_{i j}\right]^{T}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}a_{22} & -a_{12} \\ -a_{21} & a_{11}\end{array}\right]$
Example: Let $A=\left[\begin{array}{ll}3 & 1 \\ 2 & 4\end{array}\right]$, then cofactor of A is $\left[A_{i j}\right]=\left[\begin{array}{cc}4 & -2 \\ -2 & 3\end{array}\right]$.
$\Rightarrow\left[A_{i j}\right]^{T}=\left[\begin{array}{cc}4 & -1 \\ -2 & 3\end{array}\right]$.
Hence, $A^{-1}=\frac{1}{\operatorname{det} A}\left[A_{i j}\right]^{T}=\frac{1}{10}\left[\begin{array}{cc}4 & -1 \\ -2 & 3\end{array}\right]=\left[\begin{array}{cc}0.4 & -0.1 \\ -0.2 & 0.3\end{array}\right]$

