(e) Matrix Eigen value Problems

Let $A=\left[a_{i j}\right]$ be a given $n \times n$ square matrix and consider the equation

$$
\begin{equation*}
A X=\lambda X \tag{1}
\end{equation*}
$$

Here X is an unknown vector and λ an unknown scalar and we want to determine both.
A value of λ for which (1) has a solution $X \neq 0$ is called eigenvalue of the matrix A. The corresponding solutions $X \neq 0$ of (1) are called eigenvevtors of A corresponding to that eigenvalue λ.

In matrix notation, $\quad(A-\lambda I) X=0$
This homogeneous linear system of equations has a nontrivial solution if and only if the corresponding determinant of the coefficients is zero

$$
D(\lambda)=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & \cdots & a_{1 n} \tag{3}\\
a_{21} & a_{22}-\lambda & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}-\lambda
\end{array}\right|=0
$$

$D(\lambda)$ is called the characteristic determinant. The equation is called the characteristic equation of the matrix A. By developing $D(\lambda)$, we obtain a polynomial of $n^{\text {th }}$ degree in λ. This is called the characteristic polynomial of A.

Note:

- The eigenvalues of a square matrix A are the roots of the characteristic equation (3) of A. Hence an $n \times n$ matrix has at least one eigenvalue and at most n numerically different eigenvalues.
- Once the eigenvalues are known, corresponding eigenvectors are obtained.
- Repeated eigenvalues are said to be degenerate eigenvalues. For degenerate eigenvalues there are different eigenvectors for same eigenvalues.
- Non repeated eigenvalues are non-degenerate eigenvalues. For non-degenerate eigenvalues there are different eigenvectors for different eigenvalues.
- Sum of eigenvalues are equal to trace of matrix $\sum_{i} \lambda_{i}=\operatorname{trace}(A)=\sum_{i}^{n} a_{i i}$. Trace of matrix is sum of diagonal element.
- Product of eigenvalues are equal to determinant of matrix $\prod_{i}^{n} \lambda_{i}=|A|$
- Eigenvectors correspond to different eigenvalues are always independent.
- Eigenvectors corresponds to same eigenvalue may or may not be independent.

Orthonormality Condition

$$
X_{i}^{T} \cdot X_{j}=\delta_{i j}
$$

If $i=j$, then $\delta_{i j}=1$ (Normalisation Condition)
and if $i \neq j$, then $\delta_{i j}=0$ (Orthogonal Condition)

Linear independence and dimensionality of a vector space

A set of N vectors $X_{1}, X_{2}, \ldots, X_{N}$ is said to be linearly independent if $\sum_{i=1}^{N} a_{i} X_{i}=0$ is satisfied when $a_{1}=a_{2}=a_{3}=a_{4}=\ldots \ldots .=0$ otherwise it is said to be linear dependent.

The dimension of a space vector is given by the maximum number of linearly independent vectors the space can have.

The maximum number of linearly independent vectors a space has is $N\left(X_{1}, X_{2}, \ldots, X_{N}\right)$. This space is said to be N dimensional. In this case any vector Y of the vector space can be expressed as linear combination $Y=\sum_{i=1}^{N} a_{i} X_{i}$.

The Cayley-Hamilton Theorem

This theorem provides an alternative method for finding the inverse of a matrix A. Also any positive integral power of A can be expressed, using this theorem, as a linear combination of those of lower degree.
Every square matrix satisfied its own characteristic equation. That means that, if

$$
a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\ldots \ldots .+a_{n-1} \lambda+a_{n}=0
$$

is the characteristic equation of a square matrix A of order n, then

$$
a_{0} A^{n}+a_{1} A^{n-1}+\ldots \ldots . .+a_{n-1} A+a_{n} I=0
$$

Note: When λ is replaced by A in the characteristic equation, then constant term a_{n} should be replaced by $a_{n} I$ to get the result of Cayley-Hamilton theorem, where I is the unit matrix of order n. Also 0 in the R.H.S is a null matrix of order n.

