

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(h) Similarity of Matrices, Basis of Eigenvectors, and Diagonalisation

Eigenvectors of an $n \times n$ matrix A may (or may not) form a basis. If they do, we can use them for "diagonalizing" A, that is, for transforming it into diagonal form with the eigenvalues on the main diagonal.

Similarity of Matrices

An $n \times n$ matrix \hat{A} is called similar to an $n \times n$ matrix A if $\hat{A} = P^{-1}AP$

For some (nonsingular) $n \times n$ matrix P. This transformation, which gives \hat{A} from A, is called

similarity transformation.

- If \hat{A} is similar to A, then \hat{A} has the same eigenvalues as A.
- If x is an eigenvector of A, then $y = P^{-1}x$ is an eigenvector of \hat{A} corresponding to same eigenvalue.
- If λ₁, λ₂,...,λ_k be distinct eigenvalues of an n×n matrix. Then corresponding eigenvectors x₁, x₂,...,x_k form linearly independent set.

Basis of Eigenvectors

If an $n \times n$ matrix A has n distinct eigenvalues, then A has a basis of eigenvectors.

- A Hermitian, skew-Hermitian or unitary matrix has a basis of eigenvectors.
- A symmetric matrix has an orthonormal basis of eigenvectors.

Diagonalisation

If an $n \times n$ matrix A has a basis of eigenvectors, then

$$D = X^{-1}AX$$

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X is the matrix with these eigenvectors as column vectors. Also

$$D^m = X^{-1}A^m X$$

A square matrix which is not diagonalizable is called *defective*.

Example: $A = \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix}$ has eigenvalues 6, 1. The corresponding eigenvectors are $\frac{1}{\sqrt{17}} \begin{bmatrix} 4 \\ 1 \end{bmatrix} \text{ and } \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}.$

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Hence,
$$X = \begin{bmatrix} 4/\sqrt{17} & 1/\sqrt{2} \\ 1/\sqrt{17} & -1/\sqrt{2} \end{bmatrix}$$
 and $X^{-1} = \frac{1}{-5/\sqrt{34}} \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{17} & 4/\sqrt{17} \end{bmatrix}$

Thus,

$$D = X^{-1}AX = -\frac{\sqrt{34}}{5} \begin{bmatrix} -1/\sqrt{2} & -1/\sqrt{2} \\ -1/\sqrt{17} & 4/\sqrt{17} \end{bmatrix} \begin{bmatrix} 5 & 4 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 4/\sqrt{17} & 1/\sqrt{2} \\ 1/\sqrt{17} & -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 1 \end{bmatrix}$$

