(h) Similarity of Matrices, Basis of Eigenvectors, and Diagonalisation

Eigenvectors of an $n \times n$ matrix A may (or may not) form a basis. If they do, we can use them for "diagonalizing" A, that is, for transforming it into diagonal form with the eigenvalues on the main diagonal.

Similarity of Matrices

An $n \times n$ matrix \hat{A} is called similar to an $n \times n$ matrix A if $\hat{A}=P^{-1} A P$
For some (nonsingular) $n \times n$ matrix P. This transformation, which gives \hat{A} from A, is called similarity transformation.

- If \hat{A} is similar to A, then \hat{A} has the same eigenvalues as A.
- If x is an eigenvector of A, then $y=P^{-1} x$ is an eigenvector of \hat{A} corresponding to same eigenvalue.
- If $\lambda_{1}, \lambda_{2}, \ldots . \lambda_{k}$ be distinct eigenvalues of an $n \times n$ matrix. Then corresponding eigenvectors $x_{1}, x_{2}, \ldots x_{k}$ form linearly independent set.

Basis of Eigenvectors

If an $n \times n$ matrix A has n distinct eigenvalues, then A has a basis of eigenvectors.

- A Hermitian, skew-Hermitian or unitary matrix has a basis of eigenvectors.
- A symmetric matrix has an orthonormal basis of eigenvectors.

Diagonalisation

If an $n \times n$ matrix A has a basis of eigenvectors, then

$$
D=X^{-1} A X
$$

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X is the matrix with these eigenvectors as column vectors. Also

$$
D^{m}=X^{-1} A^{m} X
$$

A square matrix which is not diagonalizable is called defective.
Example: $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ has eigenvalues 6, 1. The corresponding eigenvectors are

$$
\frac{1}{\sqrt{17}}\left[\begin{array}{l}
4 \\
1
\end{array}\right] \text { and } \frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
-1
\end{array}\right]
$$

Hence, $X=\left[\begin{array}{cc}4 / \sqrt{17} & 1 / \sqrt{2} \\ 1 / \sqrt{17} & -1 / \sqrt{2}\end{array}\right]$ and $X^{-1}=\frac{1}{-5 / \sqrt{34}}\left[\begin{array}{cc}-1 / \sqrt{2} & -1 / \sqrt{2} \\ -1 / \sqrt{17} & 4 / \sqrt{17}\end{array}\right]$
Thus,

$$
D=X^{-1} A X=-\frac{\sqrt{34}}{5}\left[\begin{array}{cc}
-1 / \sqrt{2} & -1 / \sqrt{2} \\
-1 / \sqrt{17} & 4 / \sqrt{17}
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
4 / \sqrt{17} & 1 / \sqrt{2} \\
1 / \sqrt{17} & -1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{ll}
6 & 0 \\
0 & 1
\end{array}\right]
$$

