(i) Functional Matrices

If the matrix A is diagonalizable, then we can find a matrix X and a diagonal matrix D such that

$$
D=X^{-1} A X \Rightarrow A=X D X^{-1} \text { and } A^{n}=X D^{n} X^{-1}
$$

Applying the power series definition to this decomposition, we find that $f(A)$ is defined by

$$
\begin{aligned}
& f(A)=I+\alpha A+\beta A^{2}+\gamma A^{3}+\ldots \ldots(\alpha, \beta, \gamma \text { are coefficient of Taylor Expansion) } \\
& \Rightarrow f(A)=X I X^{-1}+\alpha X D X^{-1}+\beta X D^{2} X^{-1}+\gamma X D^{3} X^{-1}+\ldots \ldots . . \because A^{n}=X D^{n} X^{-1} \\
& \Rightarrow f(A)=X\left[I+\alpha D+\beta D^{2}+\gamma D^{3}+\ldots . . .\right] X^{-1} \\
& \Rightarrow f(A)=X f(D) X^{-1} \Rightarrow f(A)=X\left[\begin{array}{cccc}
f\left(d_{1}\right) & 0 & \cdots & 0 \\
0 & f\left(d_{2}\right) & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & f\left(d_{n}\right)
\end{array}\right] X^{-1}
\end{aligned}
$$

where $d_{1}, d_{2}, \ldots . . d_{n}$ denote the diagonal entries of D.
Note: If A is itself diagonal, then $f(A)=f(D)$
Note: Always try to express X as unitary matrix because its inverse is same. If X is not unitary matrix then we have to find its inverse.

Thus,
$D=X^{-1} A X=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
$\Rightarrow D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
$\because f(A)=X f(D) X^{-1} \Rightarrow e^{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]\left[\begin{array}{cc}e & 0 \\ 0 & e^{-1}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]$
$\Rightarrow e^{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} e & \frac{1}{\sqrt{2}} e^{-1} \\ \frac{1}{\sqrt{2}} e & -\frac{1}{\sqrt{2}} e^{-1}\end{array}\right]\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]=\left[\begin{array}{ll}\frac{1}{2}\left(e+e^{-1}\right) & \frac{1}{2}\left(e-e^{-1}\right) \\ \frac{1}{2}\left(e-e^{-1}\right) & \frac{1}{2}\left(e+e^{-1}\right)\end{array}\right]$

