fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

2. Coordinate System

If we want to represent any vector \overrightarrow{A} then we need a coordinate system. We have three different coordinate system namely cartesian coordinate system, spherical polar coordinate system and cylindrical polar coordinate system.

2(a). Cartesian Coordinate System

Let \hat{x} , \hat{y} and \hat{z} be unit vectors parallel to the x, y and z axis, respectively. An arbitrary vector \vec{A} can be expanded in terms of these basis vectors

The numbers A_x , A_y , and A_z are called component of \overline{A} ; geometrically, they are the projections of \overline{A} along the three coordinate axes.

Position and Separation Vectors

The location of a point in three dimensions can be described by listing its Cartesian coordinates (x, y, z). The vector to that point from the origin is called the position vector:

$$\vec{r} = x\hat{x} + y\,\hat{y} + z\,\hat{z}.$$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

fiziks

2

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Its magnitude, $r = \sqrt{x^2 + y^2 + z^2}$ is the distance from the origin,

and $\hat{r} = \frac{\vec{r}}{r} = \frac{x\hat{x} + y\hat{y} + z\hat{z}}{\sqrt{x^2 + y^2 + z^2}}$ is a unit vector pointing radially outward.

Note: In electrodynamics one frequently encounters problems involving two pointstypically, a **source point**, \vec{r} , where an electric charge is located, and a **field point**, \vec{r} , at which we are calculating the electric or magnetic field. We can define **separation vector** from the source point to the field point by \vec{R} ;

$$\vec{R} = \vec{r} - \vec{r'}$$

Its magnitude is

$$R = \left| \overrightarrow{r} - \overrightarrow{r'} \right|,\,$$

and a unit vector in the direction from \vec{r} to \vec{r} is $\hat{R} = \frac{\vec{R}}{R} = \frac{\vec{r} - \vec{r}}{|\vec{r} - \vec{r}|}$.

In Cartesian coordinates, $\vec{R} = (x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}$

$$|\vec{R}| = \sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}$$

$$\hat{R} = \frac{(x-x')\hat{x} + (y-y')\hat{y} + (z-z')\hat{z}}{\sqrt{(x-x')^2 + (y-y')^2 + (z-z')^2}}$$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

fiziks

3

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Infinitesimal Displacement Vector $(d\vec{l})$

The infinitesimal displacement vector, from (x, y, z) to (x + dx, y + dy, z + dz), is

$$d\vec{l} = dx\hat{x} + dy\,\hat{y} + dz\,\hat{z}$$

Area Element (\vec{da})

For closed surface area element is perpendicular to the surface pointing outwards as shown in figure below.

- (i) For x = 2 plane, $d\vec{a} = dydz\hat{x}$
- (ii) For x = 0 plane, $d\vec{a} = -dydz\hat{x}$
- (iii) For y = 2 plane, $\vec{da} = dxdz\hat{y}$
- (iv) For y = 0 plane, $\vec{da} = -dxdz\hat{y}$
- (v) For z = 2 plane, $d\vec{a} = dxdy\hat{z}$
- (vi) For z = 0 plane, $d\vec{a} = -dxdy\hat{z}$

For open surface area element is shown in figure below (use right hand rule)

Volume Element $(d\tau)$

Volume element $d\tau = dxdydz$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com