fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

2(b). Spherical Polar Coordinate System

In spherical polar coordinate any general point P lies on the surface of a sphere. The spherical polar coordinates (r, θ, ϕ) of a point P are defined in figure shown below; r is the distance from the origin (the magnitude of the position vector), θ (the angle drawn from the z axis) is called the polar angle, and ϕ (the angle around from the x axis) is the azimuthal angle.

Their relation to cartesian coordinates (x, y, z) can be read from the figure:

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

and
$$r = \sqrt{x^2 + y^2 + z^2}$$
, $\theta = \cos^{-1}\left(\frac{z}{r}\right)$, $\phi = \tan^{-1}\left(\frac{y}{x}\right)$

The range of r is $0 \to \infty$, θ goes from $0 \to \pi$, and ϕ goes from $0 \to 2\pi$.

Figure shows three unit vectors $\hat{r}, \hat{\theta}, \hat{\phi}$, pointing in the direction of increase of the corresponding coordinates. They constitute an orthogonal (mutually perpendicular) basis set (just like $\hat{x}, \hat{y}, \hat{z}$), and any vector \vec{A} can be expressed in terms of them in the usual way:

$$\vec{A} = A_r \hat{r} + A_\theta \hat{\theta} + A_\phi \hat{\phi}$$

 A_r , A_θ , and A_ϕ are the radial, polar and azimuthal components of \overrightarrow{A} .

If we have sphere or any part of the sphere, then we can specify r, θ and ϕ . Lets consider some examples shown in figure below:

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Infinitesimal Displacement Vector $(d\vec{l})$

An infinitesimal displacement in the \hat{r} direction is simply dr (figure a), just as an infinitesimal element of length in the x direction is dx:

$$dl_r = dr$$

On the other hand, an infinitesimal element of length in the $\hat{\theta}$ direction (figure b) is $rd\theta$

$$dl_{\theta} = rd\theta$$

Similarly, an infinitesimal element of length in the $\hat{\phi}$ direction (figure c) is $r \sin \theta d\phi$

$$dl_{\phi} = r \sin \theta \, d\phi$$

Thus, the general infinitesimal displacement $d\vec{l}$ is

$$d\vec{l} = dr\,\hat{r} + r\,d\theta\hat{\theta} + r\sin\theta\,d\phi\hat{\phi}$$

This plays the role (in line integrals, for example) that $d\hat{l} = dx \, \hat{x} + dy \, \hat{y} + dz \, \hat{z}$ played in Cartesian coordinates.

2

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Area Element (\vec{da})

If we are integrating over the surface of a sphere, for instance, then r is constant, whereas θ and ϕ change, so

$$\vec{da_1} = dl_{\theta}dl_{\phi}\hat{r} = r^2 \sin\theta \, d\theta \, d\phi \, \hat{r}$$

on the other hand, if the surface lies in the xy plane, then θ is constant ($\theta = \pi/2$) while r and ϕ vary, then

$$\vec{da}_2 = dl_r dl_\phi \hat{\theta} = r^2 dr d\phi \hat{\theta}$$

If we are integrating over the surface of an octant, for instance, then r is constant (r = R), whereas θ and ϕ change,

so,
$$\vec{da_1} = dl_\theta dl_\phi \hat{r} = R^2 \sin \theta d\theta d\phi \hat{r}.$$

If the surface lies in the xy plane, then θ is constant $(\theta = \pi/2)$ while r and ϕ vary, then

$$\vec{da_2} = dl_r dl_\phi \hat{\theta} = r^2 dr d\phi \hat{\theta}$$

If the surface lies in the yz plane, then ϕ is constant $(\phi = \pi/2)$ while r and ϕ vary, then

$$\vec{da_3} = dl_r dl_\theta \hat{\phi} = r dr d\theta \hat{\phi}$$

If the surface lies in the xz plane, then ϕ is constant ($\phi = 0$) while r and ϕ vary, then

$$d\vec{a}_4 = -dl_r dl_\theta \hat{\phi} = -r dr d\theta \hat{\phi}$$

Volume Element $(d\tau)$

The infinitesimal volume element $d\tau$, in spherical coordinates, is the product of the three infinitesimal displacements:

$$d\tau = dl_r dl_\theta dl_\phi = r^2 \sin\theta \, dr \, d\theta \, d\phi$$

Website: www.physicsbyfiziks.com | Email: fiziks.physics@gmail.com