3(a). Gradient

"Ordinary" Derivatives

Suppose we have a function of one variable: $f(x)$ then the derivative, $d f / d x$ tells us how rapidly the function $f(x)$ varies when we change the argument x by a tiny amount, $d x$:

$$
d f=\left(\frac{d f}{d x}\right) d x
$$

In words: If we change x by an amount $d x$, then f changes by an amount $d f$; the derivative is the proportionality factor. For example in figure (a), the function varies slowly with x, and the derivative is correspondingly small. In figure (b), f increases rapidly with x, and the derivative is large, as we move away from $x=0$.

Geometrical Interpretation: The derivative $d f / d x$ is the slope of the graph of f versus x.

Suppose that we have a function of three variables-say, $V(x, y, z)$ in a

$$
d V=\left(\frac{\partial V}{\partial x}\right) d x+\left(\frac{\partial V}{\partial y}\right) d y+\left(\frac{\partial V}{\partial z}\right) d z
$$

This tells us how V changes when we alter all three variables by the infinitesimal amounts $d x, d y, d z$. Notice that we do not require an infinite number of derivatives-three will suffice: the partial derivatives along each of the three coordinate directions.
Thus $\quad d V=\left(\frac{\partial \mathrm{V}}{\partial \mathrm{x}} \hat{x}+\frac{\partial V}{\partial y} \hat{y}+\frac{\partial V}{\partial z} \hat{z}\right) \cdot(d x \hat{x}+d y \hat{y}+d z \hat{z})=(\vec{\nabla} V) \cdot(d \vec{l})$,
where $\vec{\nabla} V=\frac{\partial V}{\partial x} \hat{x}+\frac{\partial V}{\partial y} \hat{y}+\frac{\partial V}{\partial z} \hat{z}$ is the gradient of V.
$\vec{\nabla} V$ is a vector quantity, with three components.

Geometrical Interpretation of the Gradient

Like any vector, the gradient has magnitude and direction. To determine its geometrical meaning, let's rewrite ; $\quad d V=\vec{\nabla} V \cdot d \vec{l}=|\vec{\nabla} V| d \vec{l} \mid \cos \theta$
where θ is the angle between $\vec{\nabla} V$ and $d \vec{l}$. Now, if we fix the magnitude $|d \vec{l}|$ and search around in various directions (that is, vary θ), the maximum change in V evidently occurs when $\theta=0$ (for then $\cos \theta=1$). That is, for a fixed distance $|d \vec{l}|, d V$ is greatest when one move in the same direction as $\vec{\nabla} V$. Thus: The gradient $\vec{\nabla} V$ points in the direction of maximum increase of the function V.
Moreover:
The magnitude $|\vec{\nabla} V|$ gives the slope (rate of increase) along this maximal direction.

Gradient in Spherical polar coordinates $V(r, \theta, \phi)$

$$
\vec{\nabla} V=\frac{\partial V}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial V}{\partial \theta} \hat{\theta}+\frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{\phi}
$$

Gradient in cylindrical coordinates $V(r, \phi, z)$

$$
\vec{\nabla} V=\frac{\partial V}{\partial r} \hat{r}+\frac{1}{r} \frac{\partial V}{\partial \phi} \hat{\phi}+\frac{\partial V}{\partial z} \hat{z}
$$

Example: Find the unit vector normal to the curve $y=x^{2}$ at the point $(2,4,1)$.
Solution: The equation of curve in the form of surface is given by $x^{2}-y=0$
A constant scalar function V on the surface is given by $V(x, y, z)=x^{2}-y$
Taking the gradient

$$
\vec{\nabla} V=\vec{\nabla}\left(x^{2}-y\right)=\frac{\partial}{\partial x}\left(x^{2}-y\right) \hat{x}+\frac{\partial}{\partial y}\left(x^{2}-y\right) \hat{y}+\frac{\partial}{\partial z}\left(x^{2}-y\right) \hat{z}=2 x \hat{x}-\hat{y}
$$

The value of the gradient at point $(2,4,1), \vec{\nabla} V=4 \hat{x}-\hat{y}$
The unit vector, as required

$$
\hat{n}= \pm \frac{4 \hat{x}-\hat{y}}{|4 \hat{x}-\hat{y}|}= \pm \frac{1}{\sqrt{17}}(4 \hat{x}-\hat{y})
$$

