fiziks

fiziks Liziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

(a) Position Vector in Two Dimensional Plane

1.1 Two dimensional motion in Cartesian coordinate

The position vector in two dimension (x, y) plane is given by $\vec{r} = x\hat{i} + y\hat{j}$

where \hat{i}, \hat{j} are unit vector in x and y direction respectively.

The base unit vector \hat{i} and \hat{j} are not vary with position as shown in figure.

The velocity is given by $\vec{v} = \dot{\vec{r}} = \dot{x}\hat{i} + \dot{y}\hat{j}$ and acceleration is given by $\vec{a} = \ddot{\vec{r}} = \ddot{x}\hat{i} + \ddot{y}\hat{j}$

Newton's law can be written as $m\ddot{x} = F_x$ and $m\ddot{y} = F_y$.

1.2 Two dimensional motion in polar coordinate.

Two dimensional system also can be represent in polar coordinate y with variable (r,θ) with transformation rule $x = r \cos \theta$ and $y = r \sin \theta$ where $r = \sqrt{x^2 + y^2}$ where r identified as magnitude of vector and $\theta = \tan^{-1}\left(\frac{y}{x}\right)$ and θ is angle measured from x axis

in anti clock wise direction as shown in figure.

In polar coordinate system \hat{r} and $\hat{\theta}$ are unit vector in radial direction and tangential direction of trajectory. One can see from the figure the \hat{r} and $\hat{\theta}$ are vary with position, where $|\hat{\mathbf{r}}| = 1$, $|\hat{\theta}| = 1$ and $\hat{r}.\hat{\theta} = 0$ conclude they are orthogonal in nature.

The unit vector \hat{r} and $\hat{\theta}$ can be written in basis of unit vector \hat{i} and \hat{j} .

The unit vectors \hat{i}, \hat{j} and $\hat{r}, \hat{\theta}$ at a point in the xy-plane. We see that the orthogonality of $\hat{\mathbf{r}}$ and

 $\hat{\theta}$ plus the fact that they are unit vectors,

 $\left| \hat{\mathbf{r}} \right| = 1, \left| \hat{\theta} \right| = 1,$

 $\hat{\mathbf{r}} = \hat{i}\cos\theta + \hat{j}\sin\theta$ and

 $\hat{\theta} = -\hat{i}\sin\theta + \hat{j}\cos\theta$ which is shown

The transformation can be shown by rotational Matrix

$$\begin{bmatrix} \hat{r} \\ \hat{\theta} \end{bmatrix} = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} \hat{i} \\ \hat{j} \end{bmatrix}$$

1.3 Time evolution of \hat{r} and $\hat{\theta}$

$$\hat{\mathbf{r}} = \hat{i}\cos\theta + \hat{j}\sin\theta \Rightarrow \frac{d\hat{r}}{dt} = -\hat{i}\sin\theta\dot{\theta} + \hat{j}\cos\theta\dot{\theta} \Rightarrow \frac{d\hat{r}}{dt} = \dot{\theta}\hat{\theta}$$
$$\hat{\theta} = -\hat{i}\sin\theta + \hat{j}\cos\theta \Rightarrow \frac{d\hat{\theta}}{dt} = -\hat{i}\cos\theta\dot{\theta} - \hat{j}\sin\theta\dot{\theta} \Rightarrow \frac{d\hat{\theta}}{dt} = -\hat{r}\dot{\theta}$$

One can easily see unit vector \hat{r} and $\hat{\theta}$ are vary with time .