(a) Position Vector in Two Dimensional Plane

1.1 Two dimensional motion in Cartesian coordinate

The position vector in two dimension (x, y) plane is given by $\vec{r}=x \hat{i}+y \hat{j}$ where \hat{i}, \hat{j} are unit vector in x and y direction respectively.

The base unit vector \hat{i} and \hat{j} are not vary with position as shown in figure.

The velocity is given by $\vec{v}=\dot{\vec{r}}=\dot{x} \hat{i}+\dot{y} \hat{j}$ and acceleration is given by $\vec{a}=\ddot{\vec{r}}=\ddot{x} \hat{i}+\ddot{y} \hat{j}$
Newton's law can be written as $m \ddot{x}=F_{x}$ and $m \ddot{y}=F_{y}$.

1.2 Two dimensional motion in polar coordinate.

Two dimensional system also can be represent in polar coordinate with variable (r, θ) with transformation rule $x=r \cos \theta$ and $y=r \sin \theta$ where $r=\sqrt{x^{2}+y^{2}}$ where r identified as magnitude of vector and $\theta=\tan ^{-1}\left(\frac{y}{x}\right)$ and θ is angle measured from x axis
 in anti clock wise direction as shown in figure.
In polar coordinate system \hat{r} and $\hat{\theta}$ are unit vector in radial direction and tangential direction of trajectory. One can see from the figure the \hat{r} and $\hat{\theta}$ are vary with position, where $|\hat{\mathbf{r}}|=1,|\hat{\theta}|=1$ and $\hat{r} . \hat{\theta}=0$ conclude they are orthogonal in nature.
The unit vector \hat{r} and $\hat{\theta}$ can be written in basis of unit vector \hat{i} and \hat{j}.

The unit vectors \hat{i}, \hat{j} and $\hat{r}, \hat{\theta}$ at a point in the $x y$-plane. We see that the orthogonality of $\hat{\mathbf{r}}$ and $\hat{\theta}$ plus the fact that they are unit vectors,
$|\hat{\mathbf{r}}|=1,|\hat{\theta}|=1$,
$\hat{\mathbf{r}}=\hat{i} \cos \theta+\hat{j} \sin \theta$ and
$\hat{\theta}=-\hat{i} \sin \theta+\hat{j} \cos \theta$ which is shown

The transformation can be shown by rotational Matrix

$$
\left[\begin{array}{l}
\hat{r} \\
\hat{\theta}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
\hat{i} \\
\hat{j}
\end{array}\right]
$$

1.3 Time evolution of \hat{r} and $\hat{\theta}$

$$
\begin{aligned}
& \hat{\mathbf{r}}=\hat{i} \cos \theta+\hat{j} \sin \theta \Rightarrow \frac{d \hat{r}}{d t}=-\hat{i} \sin \theta \dot{\theta}+\hat{j} \cos \theta \dot{\theta} \Rightarrow \frac{d \hat{r}}{d t}=\dot{\theta} \hat{\theta} \\
& \hat{\theta}=-\hat{i} \sin \theta+\hat{j} \cos \theta \Rightarrow \frac{d \hat{\theta}}{d t}=-\hat{i} \cos \theta \dot{\theta}-\hat{j} \sin \theta \dot{\theta} \Rightarrow \frac{d \hat{\theta}}{d t}=-\hat{r} \dot{\theta}
\end{aligned}
$$

One can easily see unit vector \hat{r} and $\hat{\theta}$ are vary with time.

