fiziks

(b) Velocity and Acceleration in Polar Coordinate

1.1 The Position Vector in Polar Coordinate

$$\vec{r} = x\hat{i} + y\hat{j}, \ \vec{r} = |r| [\cos\theta\hat{i} + \sin\theta\hat{j}] \Rightarrow \vec{r} = |r|\hat{r}$$

 $\mathbf{r} = r \,\hat{\mathbf{r}}$ is sometimes confusing, because the equation as written seems to make no reference to the angle θ . We know that two parameters needed to specify a position in two dimensional space (in Cartesian coordinates they are x and y), but the equation $\mathbf{r} = r \,\hat{\mathbf{r}}$ seems to contain only the quantity r. The answer is that $\hat{\mathbf{r}}$ is not a fixed vector and we need to know the value of θ to tell how $\hat{\mathbf{r}}$ is origin. Although θ does not occur explicitly in $r \,\hat{\mathbf{r}}$, its value must be known to fix the direction of $\hat{\mathbf{r}}$. This would be apparent if we wrote $\mathbf{r} = r \,\hat{\mathbf{r}}(\theta)$ to emphasize the dependence of $\hat{\mathbf{r}}$ on θ . However, by common conversation $\hat{\mathbf{r}}$ is understood to stand for $\hat{\mathbf{r}}(\theta)$.

1.2 Velocity Vector in Polar Coordinate

where \dot{r} is radial velocity in \hat{r} direction and $r\dot{\theta}$ is tangential velocity in $\hat{\theta}$ direction as shown in figure and the magnitude to velocity vector $|v| = \sqrt{\dot{r}^2 + r^2 \dot{\theta}^2}$

1.3 Acceleration Vector in Polar Coordinate

$$\frac{d\vec{v}}{dt} = \frac{d\dot{r}}{dt}\hat{r} + \dot{r}\frac{d\hat{r}}{dt} + \frac{dr}{dt}\dot{\theta}\hat{\theta} + r\frac{d\dot{\theta}}{dt}\hat{\theta} + r\dot{\theta}\frac{d\hat{\theta}}{dt}$$
$$\frac{d\vec{v}}{dt} = \ddot{r}\hat{r} + \dot{r}\dot{\theta}\hat{\theta} + \dot{r}\dot{\theta}\hat{\theta} + r\ddot{\theta}\hat{\theta} + r\dot{\theta}(-\dot{\theta})\hat{r}$$
$$\vec{a} = (\ddot{r} - r\dot{\theta}^{2})\hat{r} + (r\ddot{\theta} + 2\dot{r}\dot{\theta})\hat{\theta} \implies \vec{a} = a_{r}\hat{r} + a_{\theta}\hat{\theta}$$

 $a_r = \ddot{r} - r\dot{\theta}^2$ is radial acceleration and $a_\theta = r\ddot{\theta} + 2\dot{r}\dot{\theta}$ is tangential acceleration.

So Newton's law in polar coordinate can be written as

 $F_r = ma_r = m(\ddot{r} - r\dot{\theta}^2)$ where F_r is external force in radial direction.

 $F_{\theta} = ma_{\theta} = m(r\ddot{\theta} + 2\dot{r}\dot{\theta})$ where F_{θ} is external force in tangential direction.

fiziks

Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

Example: In planar polar co-ordinates, an object's position at time *t* is given as $(r, \theta) = (e^t m, \sqrt{8} t \operatorname{rad})$ (a) Find radial velocity tangential velocity and speed of particle at t = 0(b) Find radial acceleration tangential acceleration and magnitude of acceleration at t = 0**Solution:** (a) $(r, \theta) = (e^t m, \sqrt{8} t \operatorname{rad})$ $r = e^t, \theta = \sqrt{8} t \operatorname{rad}$ $v_r = \dot{r} \Rightarrow v_r = e^t$ at t = 0 $v_r = 1m/\operatorname{sec}$ And $v_{\theta} = r\dot{\theta} \Rightarrow e^t \sqrt{8}$ at t = 0 $v_{\theta} = r\dot{\theta} \Rightarrow e^t \sqrt{8} = \sqrt{8}$ Speed of particle is given by $|v| = \sqrt{v_r^2 + v_{\theta}^2} = \sqrt{(1)^2 + (\sqrt{8})^2} = \sqrt{9} = 3m/\operatorname{sec}$ (b) Magnitude of acceleration $a_r = \ddot{r} - \dot{\theta}^2 r \Rightarrow e^t - 8 \times e^t$ at t = 0, $1 - 8 \times 1 = -7m/\operatorname{sec}^2$ $a_{\theta} = r\ddot{\theta} + 2\dot{r}\dot{\theta} \Rightarrow e^t \times 0 + 2e^t \sqrt{8} = 2\sqrt{8}$ Magnitude of acceleration is $|a| = \sqrt{(-7)^2 + 4 \times 8} = \sqrt{49 + 32} = \sqrt{81} = 9m/\operatorname{sec}^2$