(b) Velocity and Acceleration in Polar Coordinate

1.1 The Position Vector in Polar Coordinate

$$
\vec{r}=x \hat{i}+y \hat{j}, \vec{r}=|r|[\cos \theta \hat{i}+\sin \theta \hat{j}] \Rightarrow \vec{r}=|r| \hat{r}
$$

$\mathbf{r}=r \hat{\mathbf{r}}$ is sometimes confusing, because the equation as written seems to make no reference to the angle θ. We know that two parameters needed to specify a position in two dimensional space (in Cartesian coordinates they are x and y), but the equation $\mathbf{r}=r \hat{\mathbf{r}}$ seems to contain only the quantity r. The answer is that $\hat{\mathbf{r}}$ is not a fixed vector and we need to know the value of θ to tell how $\hat{\mathbf{r}}$ is origin. Although θ does not occur explicitly in $r \hat{\mathbf{r}}$, its value must be known to fix the direction of $\hat{\mathbf{r}}$. This would be apparent if we wrote $\mathbf{r}=r \hat{\mathbf{r}}(\theta)$ to emphasize the dependence of $\hat{\mathbf{r}}$ on θ. However, by common conversation $\hat{\mathbf{r}}$ is understood to stand for $\hat{\mathbf{r}}(\theta)$.

1.2 Velocity Vector in Polar Coordinate

$\vec{v}=\frac{d(r \hat{r})}{d t}=\frac{d r}{d t} \cdot \hat{r}+r \frac{d \hat{r}}{d t}=\dot{r} \hat{\mathbf{r}}+r \frac{d \hat{\mathbf{r}}}{d t} \Rightarrow \vec{v}=\dot{r} \hat{r}+r \dot{\theta} \hat{\theta}$
where \dot{r} is radial velocity in \hat{r} direction and $r \dot{\theta}$ is tangential velocity in $\hat{\theta}$ direction as shown in figure and the magnitude to velocity vector $|v|=\sqrt{\dot{r}^{2}+r^{2} \dot{\theta}^{2}}$

1.3 Acceleration Vector in Polar Coordinate

$$
\begin{aligned}
& \frac{d \vec{v}}{d t}=\frac{d \dot{r}}{d t} \hat{r}+\dot{r} \frac{d \hat{r}}{d t}+\frac{d r}{d t} \dot{\theta} \hat{\theta}+r \frac{d \dot{\theta}}{d t} \hat{\theta}+r \dot{\theta} \frac{d \hat{\theta}}{d t} \\
& \frac{d \vec{v}}{d t}=\ddot{r} \hat{r}+\dot{r} \dot{\theta} \hat{\theta}+\dot{r} \dot{\theta} \hat{\theta}+r \ddot{\theta} \hat{\theta}+r \dot{\theta}(-\dot{\theta}) \hat{r} \\
& \vec{a}=\left(\ddot{r}-r \dot{\theta}^{2}\right) \hat{r}+(r \ddot{\theta}+2 \dot{r} \dot{\theta}) \hat{\theta} \Rightarrow \vec{a}=a_{r} \hat{r}+a_{\theta} \hat{\theta}
\end{aligned}
$$

$a_{r}=\ddot{r}-r \dot{\theta}^{2}$ is radial acceleration and $a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta}$ is tangential acceleration .
So Newton's law in polar coordinate can be written as
$F_{r}=m a_{r}=m\left(\ddot{r}-r \dot{\theta}^{2}\right)$ where F_{r} is external force in radial direction .
$F_{\theta}=m a_{\theta}=m(r \ddot{\theta}+2 \dot{r} \dot{\theta})$ where F_{θ} is external force in tangential direction.

Example: In planar polar co-ordinates, an object's position at time t is given as $(r, \theta)=\left(e^{t} m, \sqrt{8} t \mathrm{rad}\right)$
(a) Find radial velocity tangential velocity and speed of particle at $t=0$
(b) Find radial acceleration tangential acceleration and magnitude of acceleration at $t=0$

Solution: (a) $(r, \theta)=\left(e^{t} m, \sqrt{8} t \mathrm{rad}\right)$
$r=e^{t}, \theta=\sqrt{8} t$ rad $\quad v_{r}=\dot{r} \Rightarrow v_{r}=e^{t}$ at $t=0 v_{r}=1 \mathrm{~m} / \mathrm{sec}$
And $v_{\theta}=r \dot{\theta} \Rightarrow e^{t} \cdot \sqrt{8} \quad$ at $t=0 \quad v_{\theta}=r \dot{\theta} \Rightarrow e^{t} \cdot \sqrt{8}=\sqrt{8}$
Speed of particle is given by $|v|=\sqrt{v_{r}^{2}+v_{\theta}^{2}}=\sqrt{(1)^{2}+(\sqrt{8})^{2}}=\sqrt{9}=3 \mathrm{~m} / \mathrm{sec}$
(b) Magnitude of acceleration $a_{r}=\ddot{r}-\dot{\theta}^{2} r \Rightarrow e^{t}-8 \times e^{t}$ at $t=0,1-8 \times 1=-7 \mathrm{~m} / \mathrm{sec}^{2}$

$$
a_{\theta}=r \ddot{\theta}+2 \dot{r} \dot{\theta} \Rightarrow e^{t} \times 0+2 e^{t} \sqrt{8}=2 \sqrt{8}
$$

Magnitude of acceleration is $|a|=\sqrt{(-7)^{2}+4 \times 8}=\sqrt{49+32}=\sqrt{81}=9 \mathrm{~m} / \mathrm{sec}^{2}$

