(c) Circular Motion

For circular motion for radius r_{0}, at $r=r_{0}$, then $\ddot{r}=0$ so $F_{r}=m a_{r}=-m r_{0} \dot{\theta}^{2}$, where F_{r} is force in radial direction and $F_{\theta}=m a_{\theta}=m r_{0} \ddot{\theta}$, where F_{θ} is force in tangential direction .

There are two type of circular motion

1.1 Uniform Circular Motion

If there is not any force in tangential direction $F_{\theta}=0$ is condition, then motion is uniform circular motion i.e., $\dot{\theta}=\omega$ is constant known as angular speed and tangential speed is given by $v=r_{0} \omega$.

1.2 Non-uniform Circular Motion

For nonuniform circular motion of radius r radial acceleration is $a_{r}=-m r \dot{\theta}(t)^{2}=-m r \omega(t)^{2}=-\frac{m v(t)^{2}}{r}$ and tangential acceleration $a_{\theta}=\frac{d v}{d t}$

the acceleration for non uniform circular motion is given by $\vec{a}=a_{r} \hat{r}+a_{\theta} \hat{\theta} \Rightarrow-\frac{m v^{2}}{r} \hat{r}+\frac{d v}{d t} \hat{\theta}$
the magnitude of acceleration is given by $|a|=\sqrt{a_{r}^{2}+a_{\theta}^{2}} \Rightarrow \sqrt{\left(\frac{m v^{2}}{r}\right)^{2}+\left(\frac{d v}{d t}\right)^{2}}$
Example: Find the magnitude of the linear acceleration of a particle moving in a circle of radius 10 cm with uniform speed completing the circle in 4 s .

Solution: The distance covered in completing the circle is $2 \pi r=2 \pi \times 10 \mathrm{~cm}$. The linear speed is $v=\frac{2 \pi r}{t}=\frac{2 \pi \times 10 \mathrm{~cm}}{4 \mathrm{~s}}=5 \pi \mathrm{~cm} / \mathrm{s}$
The linear acceleration is

$$
a=\frac{v^{2}}{r}=\frac{(5 \pi \mathrm{~cm} / \mathrm{s})^{2}}{10 \mathrm{~cm}}=2.5 \pi^{2} \mathrm{~cm} / \mathrm{s}^{2}
$$

This acceleration is directed towards the centre of the circle.

Calculation of torque and angular momentum

$$
\vec{F}=\vec{F}_{r} \hat{r}+\vec{F}_{\theta} \hat{\theta}
$$

Torque is given by $\vec{\tau}=\vec{r} \times \vec{F}=r \hat{r} \times \vec{F}=m\left(r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}\right) \hat{r} \times \hat{\theta}=m\left(r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}\right) \hat{z}$
Torque is also defined rate of change of momentum $\tau=\frac{d J}{d t}=m\left(r^{2} \ddot{\theta}+2 r \dot{r} \dot{\theta}\right)=\frac{d\left(m r^{2} \dot{\theta}\right)}{d t}$
So, angular momentum is given by $J=m r^{2} \dot{\theta}$
If $F_{\theta}=0 \Rightarrow m(r \ddot{\theta}+2 \dot{r} \dot{\theta})=0 \Rightarrow \frac{d\left(m r^{2} \dot{\theta}\right)}{d t}=0 \Rightarrow m r^{2} \dot{\theta}=$ constant
If there is not any tangential force is in plane then angular momentum of the system is conserve.

