## (c) Mass Parabolas

From the semi-empirical mass equation we have

$$
\begin{aligned}
& M(Z, A)=A M_{N}-Z\left(M_{N}-M_{P}\right)-a_{v} A+a_{s} A^{2 / 3}+a_{c} \frac{Z(Z-1)}{A^{1 / 3}}+a_{a} \frac{(A-2 Z)^{2}}{A}(\mp, 0) a_{p} A^{-3 / 4} \\
& M(Z, A)=A\left[M_{N}-\left(a_{v}-a_{a}-\frac{a_{s}}{A^{1 / 3}}\right)\right]+Z\left[\left(M_{P}-M_{N}\right)-\frac{a_{c}}{A^{1 / 3}}-4 a_{a}\right]+Z^{2}\left[\frac{a_{c}}{A^{1 / 3}}+\frac{4 a_{a}}{A}\right] \pm E_{p}
\end{aligned}
$$

or $M(Z, A)=\alpha A+\beta Z+\gamma Z^{2} \pm \delta$
where $\alpha=M_{N}-\left(a_{v}-a_{a}-\frac{a_{s}}{A^{1 / 3}}\right), \beta=-4 a_{a}-\left(M_{n}-M_{p}\right)-\frac{a_{c}}{A^{1 / 3}}$ and $\gamma=\left(\frac{4 a_{a}}{A}+\frac{a_{c}}{A^{1 / 3}}\right)$.
$\delta$ is pairing energy $\left(E_{P}\right)=+\delta$ for even $Z$ even $N$

$$
\begin{aligned}
& =0 \text { for odd } Z \text { even } N \text { or even } N \text { and odd } Z \\
& =-\delta \text { for odd } Z \text { odd } N
\end{aligned}
$$

When $A$ is constant, the equation $M(Z, A)=\alpha A+\beta Z+\gamma Z^{2} \pm \delta$ represents a parabola. Thus the plot of $M$ and $Z$ is parabolic with the "minimum" corresponding to that value of $Z$ which gives the (hypothetical) "most stable" isobar in the isobaric family.
For Odd $A(\delta=0)$
As either one of $N$ or $Z$ is even and the other one is odd (since odd + even = odd), so only one parabola implying that there is only one stable nucleus.

Consider the isobaric family for $A$,

$$
\left(\frac{\delta M}{\delta Z}\right)_{A}=\beta+2 \gamma Z_{0}=0,
$$

$\left\{Z_{0}=\right.$ Nuclear charge of "most stable nuclei $\}$,

$$
\therefore Z_{0}=\frac{-\beta}{2 \gamma} \Rightarrow\left(\beta=-2 \gamma Z_{0}\right)
$$



So mass of the "most stable" isobar is

$$
\begin{aligned}
& M\left(Z_{0}, A\right)=\alpha A-2 \gamma Z_{0} Z_{0}+\gamma Z_{0}^{2}\left(\because \beta=-2 \gamma Z_{0}\right) \\
& \therefore M\left(Z_{0}, A\right)=\alpha A-\gamma Z_{0}^{2}
\end{aligned}
$$

Also, $\quad M(Z, A)=\alpha A-2 \gamma Z_{0} \cdot Z+\gamma Z^{2}$
The difference in masses for odd $A$ is:
$M(Z, A)-M\left(Z_{0}, A\right)=-2 \gamma Z_{0} Z+\gamma Z^{2}+\gamma Z_{0}{ }^{2}=\gamma\left(Z-Z_{0}\right)^{2}=\gamma\left(Z-Z_{0}\right)^{2}$
Even $A$ isobars ( $\delta \neq 0$ )
Here pairing term $\delta \neq 0$ since both odd-odd and even-even nuclei are included. So two parabolas,
For odd-odd: $M\left(Z_{0}, A\right)=\alpha A-\gamma Z_{0}{ }^{2}-\delta$
For even-even: $M\left(Z_{0}, A\right)=\alpha A-\gamma Z_{0}{ }^{2}+\delta$ where $Z_{0}=-\frac{\beta}{2 \gamma}$

The vertical separation between two parabolas is $2 \delta$

$$
M(Z, A)=\alpha A-2 \gamma Z_{0} Z+\gamma Z^{2} \pm \delta
$$

