



Institute for NET/JRF, GATE, IIT-JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

## (a) Andrews' Experiment on Carbon Dioxide

And rews' experiment investigated the behavior of  $CO_2$  and analyze the pressure (P)

versus volume (V) at different temperature T.

The observations are following:

- 1. Above a temperature of about  $(T = 48^{\circ}C)$ , the  $CO_2$  resembles that of Ideal gas.
- 2. As temperature is lowered, the isotherms exhibit distortion which gradually increases, which is indication of deviation from the ideal gas character.
- 3. At  $31.4^{\circ}C$  a Kink is observed which suggests that gas can be liquified under compression.
- 4. As temperature is lowered further, the kink spreads into a horizontal line, i.e., compression produces liquification.

From A to B,  $CO_2$  behaves as a gas. At point B, the liquification of the gas just starts. The gas condenses at constant pressure from B to C, so that liquid and vapour phase co-exist. At C, the gas is completely in the liquid phase. From C to D, the slope is very steep since a liquid is almost incompressible.



**Conclusion:** The temperature at which it becomes possible to liquefy a gas under compression is known as critical temperature  $(T_c)$  [In Andrews' experiment  $(T_c) = 48^{\circ}C$ ], corresponding pressure and volume is known as critical pressure  $(P_c)$  and critical volume  $(V_c)$ .

A gas can be liquified only if it is cooled upto or below its characteristic critical temperature.

There exist a continuity of liquid and gaseous states, i.e. they are two distinct stages of a continuous physical phenomenon.