

Test Your fiziks concepts!**Topic: Statistical Mechanics****(For CSIR NET-JRF, GATE, JEST and TIFR Aspirants)**

Q. A monatomic crystalline solid comprises of N atoms, out of which n atoms are in interstitial positions. If the available interstitial sites are N' , then number of possible microstates is

(a)
$$\frac{(N'+n)!}{n!N!}$$

(b)
$$\frac{N!}{n!(N+n)!} \frac{N'!}{n!(N'+n)!}$$

(c)
$$\frac{N!}{n!(N'-n)!}$$

(d)
$$\frac{N!}{n!(N-n)!} \frac{N'!}{n!(N'-n)!}$$

Ans.: (d)

Solution.: Total number of atoms = N , Total number of interstitial sites = N'
atoms at interstitial positions = n

The number of ways to choose which n atoms (out of N) moves to interstitial sites

$$= \frac{N!}{n!(N-n)!}$$

The number of ways to place these n atoms into the N' interstitial sites

$$= \frac{N'!}{n!(N'-n)!}$$

Thus, total number of possible microstates is $= \frac{N!}{n!(N-n)!} \frac{N'!}{n!(N'-n)!}$

Learn Physics in Right Way

Test Your fiziks concepts!

Topic: Mechanics

(For IIT-JAM, JEST, TIFR and CUET Aspirants)

Q. Two planets P_1 and P_2 having masses M_1 and M_2 revolve around the Sun in elliptical orbits, with time periods T_1 and T_2 respectively. The minimum and maximum distances of planet P_1 from the Sun are R and $3R$ respectively, whereas for planet P_2 these are $2R$ and $4R$, respectively, where R is a constant. Assuming M_1 and M_2 are much smaller than the mass of

the Sun, the magnitude of $\frac{T_2}{T_1}$ is

(a) $\frac{2}{3}\sqrt{\frac{2M_1}{3M_2}}$ (b) $\frac{3}{2}\sqrt{\frac{3M_2}{2M_1}}$ (c) $\frac{3}{2}\sqrt{\frac{3}{2}}$ (d) $\frac{2}{3}\sqrt{\frac{2}{3}}$

Ans.: (c)

Solution.: For P_1 : , $2a_1 = 4R \Rightarrow a_1 = 2R$; For P_2 : $2a_2 = 6R \Rightarrow a_2 = 3R$

$$\because T^2 \propto a^3 \Rightarrow \frac{T_2}{T_1} = \left(\frac{a_2}{a_1} \right)^{3/2} = \left(\frac{3R}{2R} \right)^{3/2} = \left(\frac{3}{2} \right)^{3/2} = \frac{3}{2}\sqrt{\frac{3}{2}}$$

option (c) is correct.

Learn Physics in Right Way

Test Your fiziks concepts!

Topic: Thermodynamics

(For PGT: KVS, NVS, DSSSB, State Education Boards, etc.)

Q. A Centigrade and a Fahrenheit thermometer are dipped in boiling water. The water temperature is lowered until the Fahrenheit thermometer registers 140°F. What is the fall in temperature as registered by the centigrade thermometer?

Ans.: (c)

Solution.: Using $\frac{F-32}{180} = \frac{C}{100}$, $\Rightarrow \frac{140-32}{180} = \frac{C}{100} \Rightarrow C = 60^\circ C$

As the temperature of boiling water = 100°C

$$\text{fall in temperature} = 100 - 60 = 40^\circ\text{C}$$