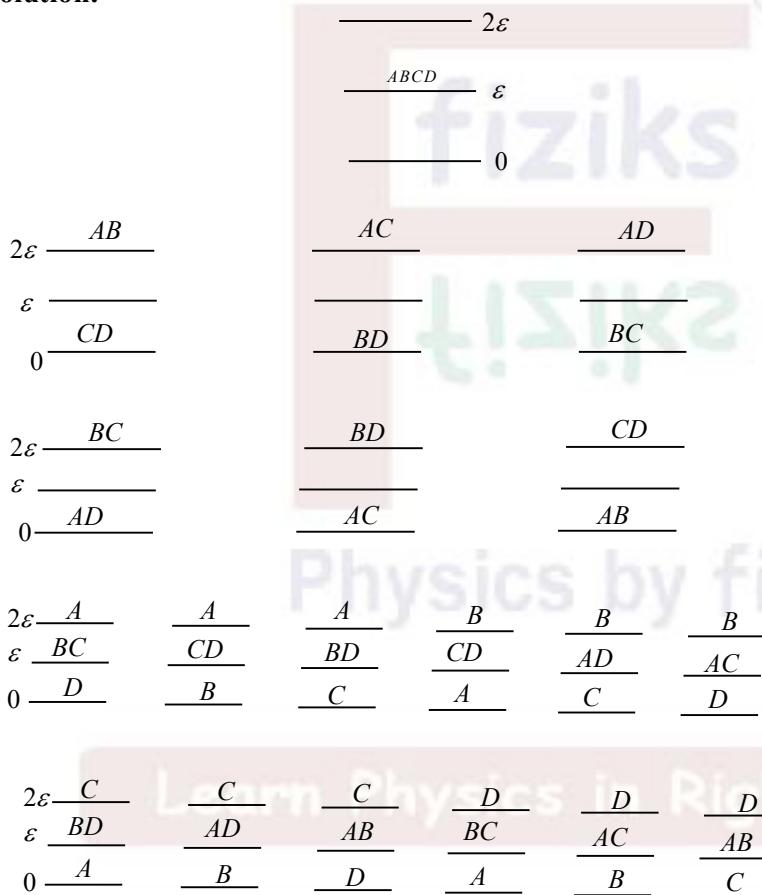


Test Your fiziks concepts!

Topic: Statistical Mechanics


(For CSIR NET-JRF, GATE, JEST and TIFR Aspirants)

Q. Four distinguishable particles fill up energy levels $0, \epsilon, 2\epsilon$. The number of available microstates for the total energy 4ϵ is

(a) 20	(b) 24
(c) 11	(d) 19

Ans.: (d)

Solution:

\therefore Total number of microstates so that total energy of a system of 4 distinguishable particle is 4ϵ is $\Omega = 19$.

Test Your fiziks concepts!

Topic: Mechanics

(For IIT-JAM, JEST, TIFR and CUET Aspirants)

Q. For a particle moving in a central potential, which one of the following statements is correct?

- (a) The motion is restricted to a plane due to the conservation of angular momentum
- (b) The motion is restricted to a plane due to the conservation of energy only
- (c) The motion is restricted to a plane due to the conservation of linear momentum
- (d) The motion is not restricted to a plane

Ans.: (a)

Solution.: For central force problem angular momentum \vec{J} is conserved and $\vec{r} \cdot \vec{J} = 0$ which ensure that motion of particle is confined in plane

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com

Learn Physics in Right Way

Test Your fiziks concepts!

Topic: Thermodynamics

(For PGT: KVS, NVS, DSSSB, State Education Boards, etc.)

Q. A copper rod of 88 cm and an aluminium rod of unknown length have their increase in length independent of increase in temperature. The length of aluminium rod is:

$$\left(\alpha_{\text{Cu}} = 1.7 \times 10^{-5} \text{ K}^{-1} \text{ and } \alpha_{\text{Al}} = 2.2 \times 10^{-5} \text{ K}^{-1} \right)$$

Ans.: (d)

Solution.: Increase in length of a metallic rod = $L\alpha\Delta T$

As the increase in length is independent of temperature

$$\therefore L\alpha = \text{constant} \Rightarrow \alpha_{Cu} L_{Cu} = \alpha_{Al} L_{Al}$$

$$1.7 \times 10^{-5} \times 88 \text{ cm} = 2.2 \times 10^{-5} \times L_{Al} \Rightarrow L_{Al} = \frac{1.7 \times 88}{2.2} = 68 \text{ cm}$$

Test Your fiziks concepts!

Topic: Statistical Mechanics

(For CSIR NET-JRF, GATE, JEST and TIFR Aspirants)

Q. System A consists of 3 identical non-interacting bosons. System B consists of 2 identical non-interacting bosons. They both have identical energy spectra - three non-degenerate energy levels $0, \epsilon, 2\epsilon$. The particles of A and B are distributed in various energy levels in such a way that the total energy of the combined system is 4ϵ . The average energy of the system A in units of ϵ is

Ans.: (b)

Solution.:

$$\text{Note: } \Omega_A = \frac{(n_i + g_i - 1)!}{n_i!(g_i - 1)!} = \frac{(3+3-1)!}{3!(3-1)!} = 10; \quad \Omega_B = \frac{(2+3-1)!}{2!(3-1)!} = 6$$

0	ε	2ε	E_A		0	ε	2ε	E_B
AAA	-	-	0		BB	-	-	0
AA	A	-	ε		B	B	-	ε
AA	-	A	2ε		B	-	B	2ε
A	AA	-	2ε		-	BB	-	2ε
A	A	A	3ε		-	B	B	3ε
A	-	AA	4ε		-	-	BB	4ε
-	AAA	-	3ε					
-	AA	A	4ε					
-	A	AA	5ε					
-	-	AAA	6ε					

	ε	2ε	$E_{Total} = 4\varepsilon$	E_A	E_B
AAA	—	BB	4ε	0	4ε
AAB	—	AB	4ε	2ε	2ε
ABB	—	AA	4ε	4ε	0
BB	AA	A	4ε	4ε	0
AB	AB	A	4ε	3ε	ε
AB	AA	B	4ε	2ε	2ε
AA	AB	B	4ε	ε	3ε
AA	BB	A	4ε	2ε	2ε
B	AAAB	—	4ε	3ε	ε
A	AABB	—	4ε	2ε	2ε

For system A, $E_{A\text{Total}} = 23\varepsilon$; $\langle E_A \rangle = \frac{23\varepsilon}{10} = 2.3\varepsilon$

For system B, $E_{B\text{Total}} = 17\varepsilon$; $\langle E_B \rangle = \frac{17\varepsilon}{10} = 1.7\varepsilon$

$$\langle E \rangle = \langle E_A \rangle + \langle E_B \rangle = 2.3\varepsilon + 1.7\varepsilon = 4\varepsilon$$

∴ Average energy of system A is 2.3ε . So (b) is correct.

Learn Physics in Right Way

Test Your fiziks concepts!

Topic: Mechanics

(For IIT-JAM, JEST, TIFR and CUET Aspirants)

Q. A planet is in a highly eccentric orbit about a star. The distance of its closest approach is 300 times smaller than its farthest distance from the star. If the corresponding speeds are v_c and v_f , then v_c/v_f is

(a) $\frac{1}{300}$ (b) $\frac{1}{\sqrt{300}}$ (c) $\sqrt{300}$ (d) 300

Ans.: (d)

Solution.: Using conservation of angular momentum

$$mv_c r_c = mv_f r_f \Rightarrow \frac{v_c}{v_f} = \frac{r_f}{r_c} = \frac{300 r_c}{r_c} = 300$$

Test Your fiziks concepts!

Topic: Thermodynamics

(For PGT: KVS, NVS, DSSSB, State Education Boards, etc.)

Q. The value of coefficient of volume expansion of glycerin is $5 \times 10^{-4} / K$. The fractional change in the density of glycerin for a rise of $40^\circ C$ in its temperature, is:

Ans.: (c)

Solution.: We know that, for volumetric expansion: $V = V_0(1 + \gamma\Delta T)$

$$\therefore \text{Volume}(V) = \frac{\text{Mass}(M)}{\text{Density}(d)} ; \frac{M}{d} = \frac{M}{d_0} (1 + \gamma \Delta T)$$

$$\Rightarrow d = d_0(1 - \gamma \Delta T) \Rightarrow d = d_0 - d_0 \gamma \Delta T \Rightarrow \frac{d_0 - d}{d_0} = \gamma \Delta T$$

$$\text{Fractional change in density} = \frac{\Delta d}{d_0} = 5 \times 10^{-4} \times 40 = 0.020$$