

Test Your fiziks concepts!

Topic: Statistical Mechanics

(For CSIR NET-JRF, GATE, JEST and TIFR Aspirants)

Q. Adding 1eV of energy to a large system did not change its temperature (27°C)

whereas it changed the number of microstates by a factor r . Then r is of the order

[Note: $1eV \simeq 11600K$]

Ans.: (c)

Solution.: According to the relationship

$$\beta = \left(\frac{\partial \ln \Omega}{\partial E} \right), \quad \Omega \text{ being the number of microstates in the system.}$$

This allows us to write, $\Delta \ln \Omega = \beta \Delta E = \frac{\Delta E}{k_B T}$

∴ by changing energy by ΔE , Ω will change by a factor of $e^{\frac{\Delta E}{k_B T}} = e^{\frac{1\text{eV}}{25\text{meV}}} \approx 2.3 \times 10^{17}$

Note:

For detailed solutions, visit the **Free Download** section at www.physicsbyfiziks.com

Test Your fiziks concepts!

Topic: Mechanics

(For IIT-JAM, JEST, TIFR and CUET Aspirants)

Q. A particle of mass m is moving in a potential $V(x) = \frac{1}{2}m\omega_0^2 x^2 + \frac{a}{2mx^2}$ where ω_0 and a are positive constants. The angular frequency of small oscillations for the simple harmonic motion of the particle about a stable minimum of the potential $V(x)$ is

(a) $\sqrt{2}\omega_0$ (b) $2\omega_0$ (c) $4\omega_0$ (d) $4\sqrt{2}\omega_0$

Ans.: (b)

Solution.: $V(x) = \frac{1}{2}m\omega_0^2 x^2 + \frac{a}{2mx^2}$; $\frac{dV}{dx} = m\omega_0^2 x - \frac{a}{mx^3} = 0 \Rightarrow x^4 = \frac{a}{m^2\omega_0^2}$

$$\left. \frac{d^2V}{dx^2} \right|_{x=x_0} = m\omega_0^2 + \frac{3a}{mx^4} \Rightarrow m\omega_0^2 + \frac{3m^2\omega_0^2}{m} = 4m\omega_0^2$$

$$\text{Thus, } \omega = \sqrt{\left. \frac{d^2V}{dx^2} \right|_{x=x_0}} = \sqrt{\frac{4m\omega_0^2}{m}} = 2\omega_0.$$

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com

Test Your fiziks concepts!

Topic: Thermodynamics

(For PGT: KVS, NVS, DSSSB, State Education Boards, etc.)

Q. Steam at 100°C is passed into 20g of water at 10°C . When water acquires a temperature of 80°C , the mass of water present will be:

[Take specific heat of water = 1 cal/g/°C and latent heat of steam = 540 cal/g]:

Ans.: (d)

Solution.: Heat lost = Heat gained

$$mL_v + ms_w\Delta\theta_1 = m_w s_w \Delta\theta_2 \Rightarrow m \times 540 + m \times 1 \times (100 - 80) = 20 \times 1 \times (80 - 10) \Rightarrow m = 2.5 \text{ g}$$

$$\text{Total mass of water} = (20 + 2.5)g = 22.5g$$

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com

Test Your fiziks concepts!

Topic: Statistical Mechanics

(For CSIR NET-JRF, GATE, JEST and TIFR Aspirants)

Q. Consider a system of $2N$ non-interacting spin $1/2$ particles each fixed in position and carrying a magnetic moment μ . The system is immersed in a uniform magnetic field B . The number of spin up particles for which the entropy of the system will be maximum is

Ans.: (b)

Solution.:

Total number of non-interacting spins = $2N$

Since they are fixed, so they are distinguishable.

In field, let the number of spins aligned or spin-up = n

In field, let the number of spin-down = $2N - n$

Number of microstates for choosing n spins-up out of $2N$ spins are $\Omega_1 = \frac{(2N)!}{(n!)(2N-n)!}$

Number of microstates for choosing $(2N - n)$ spins-down out of $2N$ spins are

$$\Omega_2 = \frac{(2N)!}{(2N-n)! (2N - (2N-n))!} = \frac{(2N)!}{(2N-n)! (n!)}$$

Since Ω_1 and Ω_2 are independent of each other, thus $\Omega_{Total} = \Omega_1\Omega_2 = \left[\frac{(2N)!}{(n!)(2N-n)!} \right]^2$

$$\text{Entropy, } S = k \ln \Omega_i \quad S = k \ln \frac{2N!}{(n!)(2N-n)!} = k \left[(\ln 2N! - \ln n! - \ln (2N-n)!) \right]$$

$$S = k \left\lceil 2N \ln 2N - 2N - n \ln n + n - \left\{ (2N-n) \ln (2N-n) - (2N-n) \right\} \right\rceil$$

$$[\because \ln N! = N \ln N - N!]$$

$$S = k \left[2N \ln 2N - 2N - n \ln n + n - (2N - n) \ln (2N - n) + 2N - n \right]$$

$$S = k \left[2N \ln 2N - n \ln n - (2N - n) \ln (2N - n) \right]$$

Now for maximum entropy at equilibrium for spin $\frac{1}{2}$ up particle, $\frac{dS}{dn} = 0$

$$\frac{dS}{dn} = k \left[0 - \ln n - 1 - (0-1) \ln (2N - n) - (2N - n) \frac{1}{2N - n} \times (0-1) \right] = 0$$

$$\Rightarrow \frac{dS}{dn} = k \left[-1 - \ln n + \ln (2N - n) + 1 \right] = k \ln \left(\frac{2N - n}{n} \right) = 0$$

$$\because k \neq 0 \quad \therefore \ln \left(\frac{2N - n}{n} \right) = 0 \Rightarrow \frac{2N - n}{n} = 1 \Rightarrow 2N = 2n \Rightarrow n = N$$

This means that entropy is maximum when the number of spin-up and spin-down particles are equal, i.e., the most disordered configuration.

This corresponds to the zero net magnetization state—which is what we expect at high temperatures when thermal agitation randomizes the spins.

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com

Test Your fiziks concepts!

Topic: Mechanics

(For IIT-JAM, JEST, TIFR and CUET Aspirants)

Q. A particle of mass m is moving in $x - y$ plane. At any given time t , its position vector is given by $\vec{r}(t) = A \cos \omega t \hat{i} + B \sin \omega t \hat{j}$ where A, B and ω are constants with $A \neq B$. Which of the following statement is not true?

- (a) Orbit of the particle is an ellipse
- (b) Speed of the particle is constant
- (c) At any given time t the particle experiences a force towards origin
- (d) The angular momentum of the particle is $m\omega AB\hat{k}$

Ans.: (b)

Solution: (a) $\vec{r}(t) = A \cos \omega t \hat{i} + B \sin \omega t \hat{j} \Rightarrow x = A \cos \omega t, y = B \sin \omega t$

$$\Rightarrow \frac{x}{A} = \cos \omega t, \frac{y}{B} = \sin \omega t \Rightarrow \frac{x^2}{A^2} + \frac{y^2}{B^2} = 1 \text{ (Ellipse)}$$

$$(b) \frac{d\vec{r}}{dt} = -A\omega \sin \omega t \hat{i} + B\omega \cos \omega t \hat{j}$$

Speed = $\left| \frac{d\vec{r}}{dt} \right| = \sqrt{A^2 \omega^2 \sin^2 \omega t + B^2 \omega^2 \cos^2 \omega t}$. Speed is function of time, so not constant.

$$(c) \frac{d\vec{r}^2}{dt^2} = -A\omega^2 \cos \omega t \hat{i} - B\omega^2 \sin \omega t \hat{j} = -\omega^2 \vec{r}. \text{ Force act towards origin.}$$

$$(d) \vec{L} = (\vec{r} \times \vec{p}) = m \begin{pmatrix} \hat{i} & \hat{j} & \hat{k} \\ A \cos \omega t & B \sin \omega t & 0 \\ -A\omega \sin \omega t & B\omega \cos \omega t & 0 \end{pmatrix} \Rightarrow \vec{L} = m\omega AB\hat{k}$$

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com

Test Your fiziks concepts!

Topic: Thermodynamics

(For PGT: KVS, NVS, DSSSB, State Education Boards, etc.)

Q. Which of the following rods, (given radius r and length l) each made of the same material and whose ends are maintained at the same temperature will conduct most heat?

(a) $r = r_0, l = l_0$ (b) $r = 2r_0, l = l_0$
(c) $r = r_0, l = 2l_0$ (d) $r = 2r_0, l = 2l_0$

Ans.: (b)

Solution.: Heat conducted = $\frac{KA(T_1 - T_2)}{l} = \frac{K\pi r^2(T_1 - T_2)}{l}$

The rod with the maximum ratio of A/l will conduct most. Here the rod with $r = 2r_0$ and $l = l_0$ will conduct most heat.

Note:

For detailed solutions, visit the *Free Download* section at www.physicsbyfiziks.com