

JEST Physics

Question Paper -2025

earn Physics in Right Way.

Be Part of Disciplined Learning

Physics by fiziks

Learn Physics in Right Way

Section A (MCQ)

Correct answer: +1, wrong answer: −1/3.

Q1. For a relativistic point particle, the momentum is $\vec{p} = \frac{m_0 \vec{v}}{\sqrt{1 - v^2/c^2}}$, where \vec{v} is its velocity as

measured by an inertial observer. Then the acceleration is in the same direction as the applied force

- (a) always
- (b) never
- (c) only when force is neither parallel nor perpendicular to the velocity
- (d) only when force is parallel or perpendicular to the velocity

Ans.: (d)

- **Q2.** A boat is floating in a pond with still water. There is a heavy stone on the boat. If the stone is dropped gently into the water, what happens to the water level in the pond after the stone sinks completely?
- (a) The level goes down
- (b) The level goes up
- (c) The level goes up or down depending on the size of the stone
- (d) The level remains the same

Ans.: (a)

Q3. Consider a quantum system that is evolved sequentially with a finite sequence of Hermitian Hamiltonians $\{H_0, H_1, ..., H_n\}$. The full evolution operator is written as:

$$O = U_n U_{n-1} ... U_1 U_0 = e^{-iH}$$
, with $U_j = e^{-iH_j}$ and, $j = 0, 1, ... n$

Then H is

(a) undefined

(b) a Hermitian operator

(c) a unitary operator

(d) None of the others

Ans.: (b)

- **Q4.** Suppose the mass of the Sun is reduced to half of its original value very slowly, e.g., over a billion years, what will be the effect of this on the Earth's orbit?
- (a) The earth flies away
- (b) Orbit remains closed but not elliptical
- (c) Remains elliptical with the same mean radius
- (d) Remains elliptical, but the mean radius changes

Ans.: (d)

Physics by fiziks

Learn Physics in Right Way

Q5. If the lattice contribution to the C_V of a solid crystal at temperature 2K is found to be $0.5 \, mJ \, \text{mole}^{-1} K^{-1}$, what will be the corresponding contribution at temperature 4K?

- (a) $2mJ \text{ mole}^{-1}K^{-1}$
- (b) $1mJ \text{ mole}^{-1}K^{-1}$ (c) $4mJ \text{ mole}^{-1}K^{-1}$
- (d) $8mJ \text{ mole}^{-1}K^{-1}$

Ans.: (c)

Q6. A particle is moving under the force field given by $\vec{F} = k\vec{r}$, where k is a positive constant. The difference in work done (in arbitrary units) if the particle moves from point A(-1,0,0) to point B(1,0,0) following semi-circular paths in the clockwise and anti-clockwise directions on the X - Y plane will be

- (a) $2\pi k$
- (b) 0

(d) $\frac{1}{2}\pi k$

Ans.: (b)

Q7. For a plane electromagnetic wave propagating with wave vector \vec{k} in a homogeneous and isotropic medium, which of the following holds?

- (a) $\vec{E} \times \vec{B} = \vec{0}$
- (b) None of the others
- (c) $\vec{E} \cdot \vec{B} = 0$ (d) $\vec{k} \cdot (\vec{E} \times \vec{B}) = 0$

Ans.: (c)

Q8. A quantum mechanical system is spanned by the eigenstates $|a_1\rangle$ and $|a_2\rangle$ of a Hermitian operator A with eigenvalues a_1 and a_2 respectively. If there is no degeneracy, what is the expectation value of the operator $(A-a_1)(A-a_2)$ in the state $\frac{|a_1\rangle+|a_2\rangle}{\sqrt{2}}$?

- (a) 1
- (b) 0
- (c) $(a_2 a_1)(a_1 a_2)$ (d) $\frac{(a_2 a_1)(a_1 a_2)}{2}$

Ans.: (b)

Q9. Three observers successively measure the spin of a given proton along z-axis, x-axis and again z-axis, respectively. The first observer finds the projection to be $+\frac{1}{2}$. Assuming no other

factors, what is the probability that the third observer finds the spin projection to be $-\frac{1}{2}$?

(a) 0

(b) 1

- (c) 0.5
- (d) None of the others

JEST Physics Question Paper-2025

Physics by fiziks

Learn Physics in Right Way

Q10. One mole of ideal gas with a constant C_V undergoes a reversible adiabatic expansion.

Which one of the following equations is valid? $\left[\gamma = \frac{C_P}{C_V} \right]$ for the gas

(a) $P^{1-\gamma}T^{\gamma} = \text{constant}$

(b) $V^{\gamma}T = \text{constant}$

(c) $P^{\gamma-1}T^{\gamma} = \text{constant}$

(d) $VT^{\gamma} = \text{constant}$

Ans.: (a)

- Q11. Consider two identical charged balls, each of mass m and charge q. One of them is initially held fixed on a frictionless insulating horizontal surface and the other is carefully placed above the first one at a height h from the surface, such that the gravitational force on it is balanced by the Coulomb repulsion. The upper ball is now shifted horizontally by a distance d(d << h) to the right and then both the balls are released. Which way will the balls move immediately after this?
- (a) ball on the surface moves towards right and ball above moves upwards
- (b) ball on the surface moves towards left, ball above moves downwards
- (c) both balls oscillate around their original positions
- (d) both balls remains static at their new positions

Ans.: (b)

- Q12. A wire of length 0.01mm is placed perpendicular to the axis of a thin convex lens, 30cm from its center. If the focal length of the lens is 20cm, what is the length of the image of the wire?
- (a) 0.02 mm
- (b) 0.01mm
- (c) 1*mm*
- (d) 0.03mm

Ans.: (a)

- Q13. The electric dipole moment of a charge distribution is independent of the choice of the origin of coordinates only if
- (a) the charge distribution is discrete
- (b) the total charge adds up to zero
- (c) there is no magnetic field present
- (d) the charge distribution is not time-dependent

Ans.: (b)

- **Q14.** Consider the time-independent Schrodinger equation with a real potential and suppose $\psi(x)$ is a solution of this equation. Which of the following is true?
- (a) ψ^* is a solution of the same equation
- (b) ψ^* is never a solution of the same equation
- (c) is a solution of the same equation only if the potential is symmetric about x = 0
- (d) is a solution of the same equation only if the potential vanishes at infinity

Ans.: (a)

Q15. Calculate the partition function for two indistinguishable bosonic particles at a temperature T, which can be distributed in two single-particle energy levels \in_1 and \in_2 . Consider $\beta = \frac{1}{k_B T}$.

(a)
$$\left(e^{-\beta \in_1} + e^{-\beta \in_2}\right)^2$$

(b)
$$e^{-2\beta \epsilon_1} + e^{-2\beta \epsilon_2} + e^{-\beta(\epsilon_1 + \epsilon_2)}$$

(c)
$$e^{-2\beta \epsilon_1} + e^{-2\beta \epsilon_2} + e^{-2\beta(\epsilon_1 + \epsilon_2)}$$

(d)
$$\frac{1}{2!} \left(e^{-\beta \epsilon_1} + e^{-\beta \epsilon_2} \right)^2$$

Ans.: (b)

- Q16. Consider the standard notation of discrete finite groups with Z_n corresponding to the rotation by $2\pi/n$ about a given axis, S_n corresponding to the permutation group of the set S having n elements, i.e. $S = \{1,2,3,...,n\}$, and the Dihedral group D_n corresponding to the reflection and rotation symmetries of a regular polygon with n number of sides. Which of the following is the smallest non-abelian group?
- (a) S_3

(b) Z_3

(c) S_4

(d) D_4

Ans.: (a)

Q17. Given the differential operator: $D = \frac{d^2}{dx^2} + P \frac{d}{dx} + Q$, where P and Q are constants, what is the eigenvalue corresponding to the eigenfunction $y = e^x$?

(a) (P+Q)

- (b) (1+Q)
- (c) (P+Q-1)
- (d) (1+P+Q)

Ans.: (d)

Q18. The Fraunhofer diffraction pattern formed by an elliptical aperture will be

- (a) circular
- (b) elliptical with the semi-major axis parallel to that of the aperture
- (c) hyperbolic
- (d) elliptical with the semi-major axis perpendicular to that of the aperture

Ans.: (d)

Q19. Match the following statements

A1	Photoelectric effect	B1	Involves loosely bound or free electrons
A2	Compton scattering	B2	Inverse photoelectric effect
A3	Pair production	В3	Needs a minimum of 1.02 MeV of energy for
	900	15	the incident radiation
A4	Bremsstrahlung	B4	Involves bound electrons and depends on the
			specifics of the material

(a) A1-B3, A2-B4, A3-B2, A4-B1

(b) A1-B3, A2-B2, A3-B1, A4-B4

(c) A1-B4, A2-B1, A3-B3, A4-B2

(d) A1-B4, A2-B3, A3-B2, A4-B1

Ans.: (c)

Q20. The Lagrangian of a two-dimensional system is given by

$$L = \frac{1}{2}m(\dot{x}^2 + \dot{y}^2) - k(x^2 + y^2)^{-1.5}$$

Which of the following is/are the constant(s) of motion?

(a) Energy only

(b) None of the others

(c) Angular momentum only

(d) Energy and angular momentum

Ans.: (d)

Q21. Which of the following thermodynamic variables is not a function of state for an ideal gas?

- (a) Entropy
- (b) None of the others
- (c) Temperature
- (d) Pressure

Ans.: (b)

Q22. A slide calipers instrument has smallest main scale division of 0.4 mm and 40 vernier divisions match with 38 main scale divisions. The vernier constant of this instrument is

- (a) 0.05 mm
- (b) 0.01*mm*
- (c) 0.02 mm
- (d) 0.1*mm*

JEST Physics Question Paper-2025

Physics by fiziks

Learn Physics in Right Way

Q23. A capacitor with capacitance C is connected in series with a resistor of resistance R and an ideal DC source with voltage V_s . At one instant during the charging of the capacitor if the resistor is replaced by a wire of zero resistance, which of the following statements is true?

- (a) None of the others is true
- (b) The voltage across the capacitor will increase slowly
- (c) The voltage across the capacitor will drop immediately to zero
- (d) The capacitor immediately attains the source voltage V_s

Ans.: (d)

Q24. The number of independent real numbers that parameterize any (3×3) Hermitian matrix is

(a) 3

(d) 6

Ans.: (c)

Q25. Consider a 2×2 matrix $A = \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$ which has eigenvalues $\lambda_1 = \frac{1+\sqrt{5}}{2}$ and $\lambda_2 = \frac{1-\sqrt{5}}{2}$.

For any natural number n which of the following is correct?

(a)
$$A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{1}^{n-1} - \lambda_{2}^{n-1} & \lambda_{1}^{n} - \lambda_{2}^{n} \\ \lambda_{1}^{n} - \lambda_{2}^{n} & \lambda_{1}^{n+1} - \lambda_{2}^{n+1} \end{bmatrix}$$
 (b) $A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{1}^{n-1} - \lambda_{2}^{n-1} & \lambda_{1}^{n} + \lambda_{2}^{n} \\ \lambda_{1}^{n} + \lambda_{2}^{n} & \lambda_{1}^{n+1} - \lambda_{2}^{n+1} \end{bmatrix}$

(b)
$$A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{1}^{n-1} - \lambda_{2}^{n-1} & \lambda_{1}^{n} + \lambda_{2}^{n} \\ \lambda_{1}^{n} + \lambda_{2}^{n} & \lambda_{1}^{n+1} - \lambda_{2}^{n+1} \end{bmatrix}$$

(c)
$$A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{1}^{n-1} + \lambda_{2}^{n-1} & \lambda_{1}^{n} + \lambda_{2}^{n} \\ \lambda_{1}^{n} + \lambda_{2}^{n} & \lambda_{1}^{n+1} + \lambda_{2}^{n+1} \end{bmatrix}$$
 (d) $A^{n} = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_{1}^{n-1} + \lambda_{2}^{n-1} & \lambda_{1}^{n} - \lambda_{2}^{n} \\ \lambda_{1}^{n} - \lambda_{2}^{n} & \lambda_{1}^{n+1} + \lambda_{2}^{n+1} \end{bmatrix}$

(d)
$$A^n = \frac{1}{\sqrt{5}} \begin{bmatrix} \lambda_1^{n-1} + \lambda_2^{n-1} & \lambda_1^n - \lambda_2^n \\ \lambda_1^n - \lambda_2^n & \lambda_1^{n+1} + \lambda_2^{n+1} \end{bmatrix}$$

Ans.: (a)

Section B (MCQ)

Correct answer: +3, wrong answer: -1.

Q1. A circular loop of radius a, carrying a current I in an anticlockwise direction (when seen downwards from the positive Z axis), is placed on the X - Y plane centered at the origin. What is the magnetic field on the X - Y plane at r >> a?

- (a) $\frac{\mu_0 I}{4} \frac{a^2}{r^3}$ in the negative Z direction
- (b) $\frac{\mu_0 I}{4} \frac{a^2}{r^3} \hat{r}$

(c) 0

(d) $\frac{\mu_0 I}{4\pi} \frac{a^2}{r^3}$ in the positive Z direction

Ans.: (a)

Q2. Evaluate $\nabla \cdot (r^4 \vec{r})$, where \vec{r} represents a three-dimensional position vector.

(a) $4r^4$

(b) 0

(c) 5r

(d) $7r^4$

Ans.: (d)

Q3. The volume of a nucleus, treated as a Fermi gas in three-dimensional space, is proportional to the number of fermions presents in it. If the total number of fermions is changed from N to 2N, the total energy of the system will

(a) be doubled

(b) be half of its original value

(c) remain the same

(d) be 4 times its original value

Ans.: (b)

Q4. Consider a two-dimensional Fermi gas at 0K with Fermi energy \in_F . The average energy per particle of this gas is

- (a) $\frac{3 \in_F}{5}$
- (b) $\frac{\epsilon_F}{4}$

- (c) $\frac{\epsilon_F}{2}$
- (d) $\frac{\epsilon_F}{3}$

Ans.: (c)

Q5. For a particle in a one-dimensional box of width L, the uncertainty Δp in momentum in the n-th eigenstate of energy for large n is

- (a) $\frac{n\pi\hbar}{L}$
- (b) $\frac{\hbar}{n\pi L}$
- (c) $\frac{2n\hbar}{L}$
- (d) $\frac{2n\pi\hbar}{L}$

Ans.: (a)

Q6. Consider the group S_4 corresponding to the permutations of the set S having four elements, say $S = \{1, 2, 3, 4\}$. How many non-identity self-inverse (i.e. order 2) elements does S_4 have?

(a) 8

(b) 12

(c) 9

(d) 6

Q7. Consider a circular disk of radius R and mass M in the X-Y plane, with a surface mass density $\sigma(r) = \sigma_0 e^{-r^2/a^2}$, where r is the distance from the center of the disk. What is the moment of inertia around the Z-axis through the center of the disk? [consider $R \gg a$]

- (a) $\frac{1}{2} Ma^2$
- (b) $6Ma^{2}$
- (c) Ma^2

(d) $\frac{1}{3} Ma^2$

Ans.: (c)

Q8. A ray of light is incident on a glass cube of refractive index 1.414 as shown in the figure. Find the angle of incidence θ_i , such that the ray grazes down the side of the glass cube.

- (a) $\pi/3$
- (b) $\pi/4$
- (c) 0
- (d) $\pi/2$

Ans.: (d)

Q9. A block, suspended from a massless spring, is fully immersed in a liquid contained in a reservoir. What is the time period of small oscillations of the block?

[Given: Mass of the block m, density of the block ρ_b , natural length of the spring L, spring constant k, acceleration due to gravity g, density of the liquid ρ_i , damping coefficient of the liquid i.e., damping per unit mass per unit velocity γ]

(a)
$$2\pi\sqrt{\frac{m}{k}}$$

(a)
$$2\pi\sqrt{\frac{m}{k}}$$
 (b) $2\pi\sqrt{\frac{L}{(1-p_l/\rho_b)g}}$ (c) $2\pi\sqrt{\frac{1}{k/m+\gamma^2/4}}$ (d) $2\pi\sqrt{\frac{1}{k/m-\gamma^2/4}}$

(c)
$$2\pi\sqrt{\frac{1}{k/m+\gamma^2/4}}$$

(d)
$$2\pi\sqrt{\frac{1}{k/m-\gamma^2/4}}$$

Ans.: (d)

Q10. A silicon p-n junction diode operates at 27° C. The current I is doubled when the forward bias is increased. The increase in the forward bias is closest to:

[Assume $I >> I_s$, where I_s is the reverse saturation current and the emission coefficient $\eta_{Si} = 2$]

- (a) $18 \, mV$
- (b) 36mV
- (c) $54 \, mV$
- (d) 72mV

Ans.: (b)

Q11. The time averaged electrostatic potential of a neutral H-atom is given by

$$\Phi(\vec{r}) = \frac{q}{4\pi \in_0} \frac{e^{-\alpha r}}{r} \left(1 + \frac{\alpha r}{2} \right)$$

The classical charge distribution corresponding to this is

(a)
$$-\frac{q}{8\pi}\alpha^3 e^{-\alpha r}$$

(b)
$$-\frac{q}{8\pi}\alpha^3 e^{-\alpha r} + q\delta^3(\vec{r})$$

(c)
$$\frac{q}{8\pi} \alpha^3 e^{-\alpha r} \left(1 + \frac{\alpha r}{2} \right) - q \delta^3 (\vec{r})$$

(d)
$$qe^{-\alpha r}\left(1+\frac{\alpha r}{2}\right)$$

Ans.: (b)

fiziks

<u>fiziks</u>

Q12. Given an isolated thermodynamic system with a total energy E, total volume V and total number of particles N, then condition for stable thermal equilibrium, in terms of its entropy S under small changes ΔE and ΔV , is given by

(a)
$$S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) + 2S(E, V, N) < 0$$

(b)
$$S(E + \Delta E, V + \Delta V, N) - S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$$

(c)
$$-S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$$

(d)
$$S(E + \Delta E, V + \Delta V, N) + S(E - \Delta E, V - \Delta V, N) - 2S(E, V, N) < 0$$

Ans.: (d)

Q13. For the circuit and the inputs P and Q shown, which of the following is the correct output Y?

(c) 1 2 3 4 5 6 7 8

Ans.: (d)

Q14. A particle is moving with velocity $v_x = v_y = v_z = c/2$ in frame S. The ratio of velocity component v_y to the velocity component v_y as measured in frame S' moving with velocity c/2with respect to frame S along the common x direction is

- (a) $\cos(\pi/3)$
- (b) $\sin(\pi/6)$
- (c) $\cos(\pi/6)$
- (d) $\sin(\pi/3)$

Ans.: (c)

Q15. For a one-dimensional simple harmonic oscillator with mass m and angular frequency ω , consider a perturbation λx^4 in the Hamiltonian $(\lambda > 0)$. What is the lowest order correction to the ground state energy?

[The position operator expressed in terms of the raising and lowering operators is

$$\hat{x} = \sqrt{\frac{\hbar}{2m\omega}} \left(\hat{a} + \hat{a}^{\dagger} \right)]$$

(a)
$$\frac{3\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$$

(b)
$$\frac{5\lambda}{4} \left(\frac{\hbar}{m\omega}\right)^2$$

(a)
$$\frac{3\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$$
 (b) $\frac{5\lambda}{4} \left(\frac{\hbar}{m\omega}\right)^2$ (c) $\frac{3\lambda}{4} \left(\frac{\hbar}{m\omega}\right)^2$ (d) $\frac{5\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$

(d)
$$\frac{5\lambda}{2} \left(\frac{\hbar}{m\omega}\right)^2$$

Section C (NAT)

Correct answer: +3, wrong answer: 0.

Q1. Given the mass of the proton $m_p \approx 1836 m_e$ and mass of the deuteron $m_d \approx 3670 m_e$, where m_e is the electron mass, find the fractional shift (in parts per million, to the nearest integer) of the ground state energy of the deuterium atom as compared to H-atom.

Ans.: 272

Q2. If a resistor of $10k\Omega$ and a capacitor of $0.5\,\mu F$ are connected in series across an AC supply of $220V\ (rms)$ at $50\,Hz$, what is the average power (in mW, to the nearest integer) dissipated in the circuit?

Ans.: 3444

Q3. The average lifetime of a muon in its rest frame is 2200 ns. What will be the average distance (in meters, to the nearest integer) travelled by it, which created with a velocity of $\frac{1}{3}c$, before it decays? Here c is the speed of light.

Ans.: 233

Q4. The Fraunhofer diffraction intensity pattern for light of wavelength λ by a single slit of width a is given by

$$I = A_0^2 \left(\frac{\sin \beta}{\beta}\right)^2$$

where A_0 is the intensity of the central maximum and $\beta = \frac{\pi a \sin \theta}{\lambda}$, where θ is the angle with the incident beam. What is the angular separation in milli-radians, between the two first minima on two sides of the central beam, if a = 1mm and $\lambda = 5000 \,\text{Å}$?

Ans.: 1

Q5. A current of 10A is maintained for 1s in a resistor of resistance 25Ω , which is thermally insulated. The initial temperature of the resistor is 23° C. The resistor has a mass of 10 gm and a specific heat of $836 Jkg^{-1}K^{-1}$. What is the entropy change of the resistor, rounding off to the nearest while number in units of JK^{-1} ?

Ans.: 6

Q6. A simple pendulum with effective length l and a bob of mass m has a time period T_1 . Suppose now that the bob is given an electric charge +Q. It is made to oscillate just above a two dimensional infinite sheet with surface charge density $+\sigma$, where $\frac{Q\sigma}{mg} \in \frac{3}{2}$, \in_0 being the permittivity of free space and g being the acceleration due to gravity. If the period of oscillation in this case is T_2 , determine $\frac{T_2}{T_1}$. [Neglect radiation from the charge]

Ans.: 2

Q7. What is the value of the integral

$$I = \frac{3}{2\pi} \iint_C \frac{dz}{1+z^2} \,,$$

where the contour *C* is a circle of radius 2 centered at the origin?

Ans.: 0

Q8. Suppose the wave function of a free particle in one dimension obeys $\frac{d^2\psi}{dx^2} = -4\psi$ in units where $\hbar = 1$. What is the magnitude of the momentum of the particle?

Ans.: 2

Q9. A 3×3 matrix M satisfies $M^2 - 3M + 2I = 0$. Find the determinant of the matrix M if its trace is 6.

Ans.: 6

Q10. A heat engine works between a high temperature source and a sink at 27°C. If the maximum efficiency possible for it to achieve is 50%, what is the temperature of the source in °C?

Ans.: 327